Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Oct;470:521–537. doi: 10.1113/jphysiol.1993.sp019873

Role of GTP-protein and endothelium in contraction induced by ethanol in pig coronary artery.

M Kuroiwa 1, H Aoki 1, S Kobayashi 1, J Nishimura 1, H Kanaide 1
PMCID: PMC1143932  PMID: 8308741

Abstract

1. We examined the effects of ethanol on the contractility of strips of porcine coronary artery, with and without endothelium, and following permeabilization with alpha-toxin, and of aortic valvular endothelial cells, in situ. Changes in cytosolic Ca2+ concentration ([Ca2+]i) of the coronary artery smooth muscle cells and of the valvular endothelial cells were monitored using front-surface fluorometry of the calcium indicator dye, fura-2. In permeabilized preparations, [Ca2+]i was clamped using 10 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetra ace tic acid (EGTA) and 10 microM A23187 (a calcium ionophore). 2. The strips without endothelium were placed in normal physiological salt solution (normal PSS) in the presence of ethanol (100-1000 mM). There were dose-dependent increases in [Ca2+]i and a rapid sustained rise in tension. In Ca(2+)-free PSS, ethanol increased [Ca2+]i and tension, similar to, but much smaller than, findings with normal PSS. 3. For a given change in [Ca2+]i induced by ethanol, the developed tension was greater than that observed during contractions induced by high [K+]o. Thus, the [Ca2+]-tension curve for ethanol was shifted to the left of that for high [K+]o. The [Ca2+]-tension curve for the contraction induced by ethanol in the absence of extracellular Ca2+ was shifted further to the left from that obtained in the presence of [Ca2+]o. 4. The mechanisms involved in this Ca(2+)-sensitizing effect of ethanol were investigated using alpha-toxin-permeabilized coronary medial strips. Ethanol increased the tension development, in a concentration-dependent manner, at a fixed concentration of Ca2+ (pCa = 6.3) in the presence of guanosine-5'-triphosphate (GTP), an effect antagonized by guanosine-5'-O-(beta-thiodiphosphate) (GDP beta S), a non-hydrolysable GDP analogue. 5. With intact endothelium, the ethanol-induced tension development was markedly reduced, although inhibition in the increase in [Ca2+]i was slight. The [Ca2+]-tension relationship of this contraction overlapped with that obtained with high [K+]o-induced contraction and was shifted to the right from that obtained in the absence of the endothelium. This endothelium-dependent reduction of [Ca2+]i and tension induced by ethanol was inhibited when the strips were exposed to NG-monomethyl-L-arginine (L-NMMA). 6. Ethanol induced a gradual and sustained increase in [Ca2+]i in normal PSS, and a transient, concentration-dependent increase in [Ca2+]i in Ca(2+)-free PSS in porcine aortic valvular endothelial cells in situ.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
522

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S., Kanaide H., Nakamura M. Front-surface fluorometry with fura-2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig. Br J Pharmacol. 1990 Nov;101(3):545–552. doi: 10.1111/j.1476-5381.1990.tb14118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altura B. M., Altura B. T., Carella A. Ethanol produces coronary vasospasm: evidence for a direct action of ethanol on vascular muscle. Br J Pharmacol. 1983 Feb;78(2):260–262. doi: 10.1111/j.1476-5381.1983.tb09389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aoki H., Kobayashi S., Nishimura J., Yamamoto H., Kanaide H. Endothelin induces the Ca(2+)-transient in endothelial cells in situ. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1352–1357. doi: 10.1016/0006-291x(91)92087-z. [DOI] [PubMed] [Google Scholar]
  4. Cigarroa R. G., Lange R. A., Popma J. J., Yurow G., Sills M. N., Firth B. G., Hillis L. D. Ethanol-induced coronary vasodilation in patients with and without coronary artery disease. Am Heart J. 1990 Feb;119(2 Pt 1):254–259. doi: 10.1016/s0002-8703(05)80013-4. [DOI] [PubMed] [Google Scholar]
  5. Deitrich R. A., Dunwiddie T. V., Harris R. A., Erwin V. G. Mechanism of action of ethanol: initial central nervous system actions. Pharmacol Rev. 1989 Dec;41(4):489–537. [PubMed] [Google Scholar]
  6. Di Virgilio F., Steinberg T. H., Silverstein S. C. Organic-anion transport inhibitors to facilitate measurement of cytosolic free Ca2+ with fura-2. Methods Cell Biol. 1989;31:453–462. doi: 10.1016/s0091-679x(08)61622-2. [DOI] [PubMed] [Google Scholar]
  7. Dorio R. J., Hoek J. B., Rubin E., Forman H. J. Ethanol modulation of rat alveolar macrophage superoxide production. Biochem Pharmacol. 1988 Sep 15;37(18):3528–3531. doi: 10.1016/0006-2952(88)90708-3. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hayes S. N., Bove A. A. Ethanol causes epicardial coronary artery vasoconstriction in the intact dog. Circulation. 1988 Jul;78(1):165–170. doi: 10.1161/01.cir.78.1.165. [DOI] [PubMed] [Google Scholar]
  10. Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirano K., Kanaide H., Abe S., Nakamura M. Effects of diltiazem on calcium concentrations in the cytosol and on force of contractions in porcine coronary arterial strips. Br J Pharmacol. 1990 Oct;101(2):273–280. doi: 10.1111/j.1476-5381.1990.tb12700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoek J. B., Thomas A. P., Rubin R., Rubin E. Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes. J Biol Chem. 1987 Jan 15;262(2):682–691. [PubMed] [Google Scholar]
  13. Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
  14. Knych E. T., Guimaraes C. M., Boivin S. Tolerance to ethanol-induced contractions of vascular smooth muscle: role of endothelium. Life Sci. 1984 Aug 6;35(6):611–617. doi: 10.1016/0024-3205(84)90256-x. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi S., Gong M. C., Somlyo A. V., Somlyo A. P. Ca2+ channel blockers distinguish between G protein-coupled pharmacomechanical Ca2+ release and Ca2+ sensitization. Am J Physiol. 1991 Feb;260(2 Pt 1):C364–C370. doi: 10.1152/ajpcell.1991.260.2.C364. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi S., Kitazawa T., Somlyo A. V., Somlyo A. P. Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem. 1989 Oct 25;264(30):17997–18004. [PubMed] [Google Scholar]
  17. Kodama M., Kanaide H., Abe S., Hirano K., Kai H., Nakamura M. Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Commun. 1989 May 15;160(3):1302–1308. doi: 10.1016/s0006-291x(89)80145-7. [DOI] [PubMed] [Google Scholar]
  18. Lieber C. S. Hepatic, metabolic and toxic effects of ethanol: 1991 update. Alcohol Clin Exp Res. 1991 Aug;15(4):573–592. doi: 10.1111/j.1530-0277.1991.tb00563.x. [DOI] [PubMed] [Google Scholar]
  19. Mayer B., Schmidt K., Humbert P., Böhme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):678–685. doi: 10.1016/0006-291x(89)91513-1. [DOI] [PubMed] [Google Scholar]
  20. Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  22. Nishimura J., van Breemen C. Direct regulation of smooth muscle contractile elements by second messengers. Biochem Biophys Res Commun. 1989 Sep 15;163(2):929–935. doi: 10.1016/0006-291x(89)92311-5. [DOI] [PubMed] [Google Scholar]
  23. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  24. Ponnappa B. C., Hoek J. B., Waring A. J., Rubin E. Effect of ethanol on amylase secretion and cellular calcium homeostasis in pancreatic acini from normal and ethanol-fed rats. Biochem Pharmacol. 1987 Jan 1;36(1):69–79. doi: 10.1016/0006-2952(87)90383-2. [DOI] [PubMed] [Google Scholar]
  25. Rabin R. A., Molinoff P. B. Multiple sites of action of ethanol on adenylate cyclase. J Pharmacol Exp Ther. 1983 Dec;227(3):551–556. [PubMed] [Google Scholar]
  26. Reinlib L., Akinshola E., Potter J. J., Mezey E. Ethanol-induced increases in [Ca2+]i and inositol (1,4,5) triphosphate in rat hepatocytes. Biochem Biophys Res Commun. 1990 Dec 31;173(3):774–780. doi: 10.1016/s0006-291x(05)80854-x. [DOI] [PubMed] [Google Scholar]
  27. Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
  28. Rooney T. A., Hager R., Rubin E., Thomas A. P. Short chain alcohols activate guanine nucleotide-dependent phosphoinositidase C in turkey erythrocyte membranes. J Biol Chem. 1989 Apr 25;264(12):6817–6822. [PubMed] [Google Scholar]
  29. Rubin R., Hoek J. B. Alcohol-induced stimulation of phospholipase C in human platelets requires G-protein activation. Biochem J. 1988 Aug 15;254(1):147–153. doi: 10.1042/bj2540147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  31. Sato K., Ozaki H., Karaki H. Differential effects of carbachol on cytosolic calcium levels in vascular endothelium and smooth muscle. J Pharmacol Exp Ther. 1990 Oct;255(1):114–119. [PubMed] [Google Scholar]
  32. Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension. 1982 May-Jun;4(3 Pt 2):19–25. [PubMed] [Google Scholar]
  33. Zhang A., Cheng T. P., Altura B. M. Ethanol decreases cytosolic-free calcium ions in vascular smooth muscle cells as assessed by digital image analysis. Alcohol Clin Exp Res. 1992 Feb;16(1):55–57. doi: 10.1111/j.1530-0277.1992.tb00635.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES