Abstract
1. The effects of isoprenaline (Iso) on Ca2+ channel current in enzymatically isolated single cells of the guinea-pig taenia caeci were examined using the standard whole-cell voltage-clamp method. 2. Iso potentiated the voltage-dependent Ca2+ current; the threshold and maximally effective concentration of Iso to increase Ca2+ current were 3-10 nM and 1-3 microM, respectively. The average increase in Ca2+ current produced by 3 microM Iso was 42 +/- 6% (mean +/- S.E.M.) and the response could be obtained repeatedly in the same cell. The concentration-response relationship could be fitted by a binding model with a Hill coefficient of 1 and a dissociation constant of 42 nM. 3. The effect of Iso on Ca2+ current was voltage dependent. Although potentiation of Ca2+ current by Iso was obvious between -30 and +10 mV, it was small or absent around +20 to +30 mV. Iso had little effect on the relationship between inactivation of the Ca2+ current and voltage obtained using a double-pulse protocol. 4. External application of forskolin, an adenylyl cyclase activator, or internal perfusion of cAMP or dibutyryl cAMP from the recording pipette, did not increase Ca2+ current and potentiation of Ca2+ current by Iso was observed repeatedly and was unchanged. 5. Internal perfusion of GTP gamma S or GDP beta S increased or did not affect the Ca2+ current and potentiation of Ca2+ current by Iso was unchanged and could be recorded repeatedly for about 20 min after rupture of the cell membrane. In addition, treatment of cells with the potent protein kinase C inhibitor, chelerythrine, had no effect on Ca2+ current or on potentiation of Ca2+ current by Iso. 6. These results suggest that the Ca2+ current in guinea-pig taenia caeci cells is potentiated by isoprenaline via mechanisms which do not involve either a cAMP pathway, a G-protein pathway or a protein kinase C pathway. The receptor involved appeared to be an atypical adrenoreceptor not blocked by either alpha- or beta-receptor blocking agents.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULBRING E., KURIYAMA H. Effects of changes in ionic environment on the action of acetylcholine and adrenaline on the smooth muscle cells of guinea-pig taenia coli. J Physiol. 1963 Apr;166:59–74. doi: 10.1113/jphysiol.1963.sp007090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURNSTOCK G. The effects of acetylcholine on membrane potential, spike frequency, conduction velocity and excitability in the taenia coli of the guinea-pig. J Physiol. 1958 Aug 29;143(1):165–182. doi: 10.1113/jphysiol.1958.sp006051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer V., Ito Y. Effect of potassium channel blocking agents on the actions of phenylephrine in rabbit taenia caeci. Gen Physiol Biophys. 1991 Apr;10(2):111–124. [PubMed] [Google Scholar]
- Bean B. P., Nowycky M. C., Tsien R. W. Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. 1984 Jan 26-Feb 1Nature. 307(5949):371–375. doi: 10.1038/307371a0. [DOI] [PubMed] [Google Scholar]
- Benham C. D., Bolton T. B., Lang R. J. Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature. 1985 Jul 25;316(6026):345–347. doi: 10.1038/316345a0. [DOI] [PubMed] [Google Scholar]
- Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benham C. D., Tsien R. W. Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol. 1988 Oct;404:767–784. doi: 10.1113/jphysiol.1988.sp017318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
- Bolton T. B. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1972 Feb;220(3):647–671. doi: 10.1113/jphysiol.1972.sp009728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boutjdir M., Méry P. F., Hanf R., Shrier A., Fischmeister R. High affinity forskolin inhibition of L-type Ca2+ current in cardiac cells. Mol Pharmacol. 1990 Dec;38(6):758–765. [PubMed] [Google Scholar]
- Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
- Bülbring E., Tomita T. Increase of membrane conductance by adrenaline in the smooth muscle of guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):89–102. doi: 10.1098/rspb.1969.0013. [DOI] [PubMed] [Google Scholar]
- Bülbring E., Tomita T. The effect of catecholamines on the membrane resistance and spike generation in the smooth muscle of guinea-pig taenia coli. J Physiol. 1968 Feb;194(2):74–6P. [PubMed] [Google Scholar]
- Cavalié A., Allen T. J., Trautwein W. Role of the GTP-binding protein Gs in the beta-adrenergic modulation of cardiac Ca channels. Pflugers Arch. 1991 Nov;419(5):433–443. doi: 10.1007/BF00370785. [DOI] [PubMed] [Google Scholar]
- Droogmans G., Declerck I., Casteels R. Effect of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells. Pflugers Arch. 1987 Jun;409(1-2):7–12. doi: 10.1007/BF00584744. [DOI] [PubMed] [Google Scholar]
- Fukumitsu T., Hayashi H., Tokuno H., Tomita T. Increase in calcium channel current by beta-adrenoceptor agonists in single smooth muscle cells isolated from porcine coronary artery. Br J Pharmacol. 1990 Jul;100(3):593–599. doi: 10.1111/j.1476-5381.1990.tb15852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
- Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hartzell H. C., Fischmeister R. Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol Pharmacol. 1987 Nov;32(5):639–645. [PubMed] [Google Scholar]
- Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
- Herbert J. M., Augereau J. M., Gleye J., Maffrand J. P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990 Nov 15;172(3):993–999. doi: 10.1016/0006-291x(90)91544-3. [DOI] [PubMed] [Google Scholar]
- Inoue R., Isenberg G. Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J Physiol. 1990 May;424:57–71. doi: 10.1113/jphysiol.1990.sp018055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kameyama M., Hescheler J., Hofmann F., Trautwein W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflugers Arch. 1986 Aug;407(2):123–128. doi: 10.1007/BF00580662. [DOI] [PubMed] [Google Scholar]
- Kameyama M., Hofmann F., Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985 Oct;405(3):285–293. doi: 10.1007/BF00582573. [DOI] [PubMed] [Google Scholar]
- Klöckner U., Isenberg G. Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pflugers Arch. 1991 Mar;418(1-2):168–175. doi: 10.1007/BF00370467. [DOI] [PubMed] [Google Scholar]
- Koch W. J., Ellinor P. T., Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. J Biol Chem. 1990 Oct 15;265(29):17786–17791. [PubMed] [Google Scholar]
- Loirand G., Pacaud P., Mironneau C., Mironneau J. GTP-binding proteins mediate noradrenaline effects on calcium and chloride currents in rat portal vein myocytes. J Physiol. 1990 Sep;428:517–529. doi: 10.1113/jphysiol.1990.sp018225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marks T. N., Dubyak G. R., Jones S. W. Calcium currents in the A7r5 smooth muscle-derived cell line. Pflugers Arch. 1990 Dec;417(4):433–439. doi: 10.1007/BF00370664. [DOI] [PubMed] [Google Scholar]
- McCarron J. G., McGeown J. G., Reardon S., Ikebe M., Fay F. S., Walsh J. V., Jr Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II. Nature. 1992 May 7;357(6373):74–77. doi: 10.1038/357074a0. [DOI] [PubMed] [Google Scholar]
- Nakazawa K., Saito H., Matsuki N. Effects of calcitonin gene-related peptide (CGRP) on Ca(2+)-channel current of isolated smooth muscle cells from rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1992 Nov;346(5):515–522. doi: 10.1007/BF00169006. [DOI] [PubMed] [Google Scholar]
- Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
- Nishimura J., Moreland S., Ahn H. Y., Kawase T., Moreland R. S., van Breemen C. Endothelin increases myofilament Ca2+ sensitivity in alpha-toxin-permeabilized rabbit mesenteric artery. Circ Res. 1992 Oct;71(4):951–959. doi: 10.1161/01.res.71.4.951. [DOI] [PubMed] [Google Scholar]
- Ohya Y., Kitamura K., Kuriyama H. Modulation of ionic currents in smooth muscle balls of the rabbit intestine by intracellularly perfused ATP and cyclic AMP. Pflugers Arch. 1987 May;408(5):465–473. doi: 10.1007/BF00585070. [DOI] [PubMed] [Google Scholar]
- Ohya Y., Sperelakis N. Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res. 1991 Mar;68(3):763–771. doi: 10.1161/01.res.68.3.763. [DOI] [PubMed] [Google Scholar]
- Oike M., Kitamura K., Kuriyama H. Histamine H3-receptor activation augments voltage-dependent Ca2+ current via GTP hydrolysis in rabbit saphenous artery. J Physiol. 1992 Mar;448:133–152. doi: 10.1113/jphysiol.1992.sp019033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pacaud P., Bolton T. B. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J Physiol. 1991 Sep;441:477–499. doi: 10.1113/jphysiol.1991.sp018763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quist E., Powell P., Vasan R. Guanylnucleotide specificity for muscarinic receptor inhibitory coupling to cardiac adenylate cyclase. Mol Pharmacol. 1992 Jan;41(1):177–184. [PubMed] [Google Scholar]
- Rusko J., Bauer V. Calcium and the activation of the alpha 1-adrenoceptors in the guinea-pig taenia caeci. Br J Pharmacol. 1988 Jun;94(2):557–565. doi: 10.1111/j.1476-5381.1988.tb11561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusko J., Bolton T. B., Aaronson P., Bauer V. Effects of phenylephrine in single isolated smooth muscle cells of rabbit and guinea pig taenia caeci. Eur J Pharmacol. 1990 Aug 10;184(2-3):325–328. doi: 10.1016/0014-2999(90)90626-h. [DOI] [PubMed] [Google Scholar]
- Scamps F., Rybin V., Puceat M., Tkachuk V., Vassort G. A Gs protein couples P2-purinergic stimulation to cardiac Ca channels without cyclic AMP production. J Gen Physiol. 1992 Oct;100(4):675–701. doi: 10.1085/jgp.100.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada T., Somlyo A. P. Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol. 1992 Jul;100(1):27–44. doi: 10.1085/jgp.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiaho F., Nargeot J., Richard S. Voltage-dependent regulation of L-type cardiac Ca channels by isoproterenol. Pflugers Arch. 1991 Dec;419(6):596–602. doi: 10.1007/BF00370301. [DOI] [PubMed] [Google Scholar]
- Tokuno H., Tomita T. Collagenase eliminates the electrical responses of smooth muscle to catecholamines. Eur J Pharmacol. 1987 Sep 2;141(1):131–133. doi: 10.1016/0014-2999(87)90419-5. [DOI] [PubMed] [Google Scholar]
- Tomasic M., Boyle J. P., Worley J. F., 3rd, Kotlikoff M. I. Contractile agonists activate voltage-dependent calcium channels in airway smooth muscle cells. Am J Physiol. 1992 Jul;263(1 Pt 1):C106–C113. doi: 10.1152/ajpcell.1992.263.1.C106. [DOI] [PubMed] [Google Scholar]
- Usuki T., Obara K., Someya T., Ozaki H., Karaki H., Fusetani N., Yabu H. Calyculin A increases voltage-dependent inward current in smooth muscle cells isolated from guinea pig taenia coli. Experientia. 1991 Sep 15;47(9):939–941. doi: 10.1007/BF01929886. [DOI] [PubMed] [Google Scholar]
- Welling A., Felbel J., Peper K., Hofmann F. Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol. 1992 Mar;262(3 Pt 1):L351–L359. doi: 10.1152/ajplung.1992.262.3.L351. [DOI] [PubMed] [Google Scholar]
- Worley J. F., Quayle J. M., Standen N. B., Nelson M. T. Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines. Am J Physiol. 1991 Dec;261(6 Pt 2):H1951–H1960. doi: 10.1152/ajpheart.1991.261.6.H1951. [DOI] [PubMed] [Google Scholar]
- Yatani A., Brown A. M. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science. 1989 Jul 7;245(4913):71–74. doi: 10.1126/science.2544999. [DOI] [PubMed] [Google Scholar]
- Yatani A., Imoto Y., Codina J., Hamilton S. L., Brown A. M., Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem. 1988 Jul 15;263(20):9887–9895. [PubMed] [Google Scholar]
- Yoshino M., Someya T., Nishio A., Yazawa K., Usuki T., Yabu H. Multiple types of voltage-dependent Ca channels in mammalian intestinal smooth muscle cells. Pflugers Arch. 1989 Aug;414(4):401–409. doi: 10.1007/BF00585049. [DOI] [PubMed] [Google Scholar]