Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Aug 1;221(3):845–853. doi: 10.1042/bj2210845

A chondroitin sulphate proteoglycan from human cultured glial and glioma cells. Structural and functional properties.

B Norling, B Glimelius, A Wasteson
PMCID: PMC1144115  PMID: 6477500

Abstract

A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.

Full text

PDF
850

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadò R., Ingmar B., Lindahl U., Wasteson A. Depolymerisation and desulphation of chondroitin sulphate by enzymes from embryonic chick cartilage. FEBS Lett. 1974 Feb 1;39(1):49–52. doi: 10.1016/0014-5793(74)80014-1. [DOI] [PubMed] [Google Scholar]
  2. Arvidson S., Holme T., Wadström T. Formation of bacteriolytic enzymes in batch and continuous culture of Staphylococcus aureus. J Bacteriol. 1970 Oct;104(1):227–233. doi: 10.1128/jb.104.1.227-233.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cöster L., Carlstedt I., Malmström A. Isolation of 35S- and 3H-labelled proteoglycans from cultures of human embryonic skin fibroblasts. Biochem J. 1979 Dec 1;183(3):669–681. doi: 10.1042/bj1830669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fransson L. A., Carlstedt I. Alkaline and smith degradation of oxidized dermatan sulphate-chondroitin sulphate copolymers. Carbohydr Res. 1974 Sep;36(2):349–358. doi: 10.1016/s0008-6215(00)83056-6. [DOI] [PubMed] [Google Scholar]
  5. Fransson L. A. Interaction between dermatan sulphate chains. I. Affinity chromatography of copolymeric galactosaminioglycans on dermatan sulphate-substituted agarose. Biochim Biophys Acta. 1976 Jun 23;437(1):106–115. doi: 10.1016/0304-4165(76)90351-2. [DOI] [PubMed] [Google Scholar]
  6. Glimelius B., Norling B., Westermark B., Wasteson A. Composition and distribution of glycosaminoglycans in cultures of human normal and malignant glial cells. Biochem J. 1978 Jun 15;172(3):443–456. doi: 10.1042/bj1720443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glimelius G., Norling B., Westermark B., Wasteson A. Turnover of cell surface associated glycosaminoglycans in cultures of human normal and malignant glial cells. Exp Cell Res. 1978 Nov;117(1):179–189. doi: 10.1016/0014-4827(78)90440-8. [DOI] [PubMed] [Google Scholar]
  8. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  9. Hardingham T. E. The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J. 1979 Jan 1;177(1):237–247. doi: 10.1042/bj1770237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardingham T. Proteoglycans: their structure, interactions and molecular organization in cartilage. Biochem Soc Trans. 1981 Dec;9(6):489–497. doi: 10.1042/bst0090489. [DOI] [PubMed] [Google Scholar]
  11. Hascall V. C., Riolo R. L., Hayward J., Jr, Reynolds C. C. Treatment of bovine nasal cartilage proteoglycan with chondroitinases from Flavobacterium heparinum and Proteus vulgaris. J Biol Chem. 1972 Jul 25;247(14):4521–4528. [PubMed] [Google Scholar]
  12. Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
  13. Heinegård D. Extraction, fractionation and characterization of proteoglycans from bovine tracheal cartilage. Biochim Biophys Acta. 1972 Nov 28;285(1):181–192. doi: 10.1016/0005-2795(72)90190-0. [DOI] [PubMed] [Google Scholar]
  14. Ingmar B., Wasteson A. Sequential degradation of a chondroitin sulphate trisaccharide by lysosomal enzymes from embryonic-chick epiphysial cartilage. Biochem J. 1979 Apr 1;179(1):7–13. doi: 10.1042/bj1790007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kessler S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J Immunol. 1976 Nov;117(5 Pt 1):1482–1490. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. McMurtrey J., Radhakrishnamurthy B., Dalferes E. R., Jr, Berenson G. S., Gregory J. D. Isolation of proteoglycan-hyaluronate complexes from bovine aorta. J Biol Chem. 1979 Mar 10;254(5):1621–1626. [PubMed] [Google Scholar]
  18. Norling B., Glimelius B., Westermark B., Wasteson A. A chondroitin sulphate proteoglycan from human cultured glial cells aggregates with hyaluronic acid. Biochem Biophys Res Commun. 1978 Oct 30;84(4):914–921. doi: 10.1016/0006-291x(78)91670-4. [DOI] [PubMed] [Google Scholar]
  19. Oegema T. R., Jr, Hascall V. C., Dziewiatkowski D. D. Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1975 Aug 10;250(15):6151–6159. [PubMed] [Google Scholar]
  20. Oegema T. R., Jr, Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem. 1979 Feb 25;254(4):1312–1318. [PubMed] [Google Scholar]
  21. Oldberg A., Heldin C. H., Wasteson A., Busch C., Hök M. Characterization of a platelet endoglycosidase degrading heparin-like polysaccharides. Biochemistry. 1980 Dec 9;19(25):5755–5762. doi: 10.1021/bi00566a014. [DOI] [PubMed] [Google Scholar]
  22. Poole A. R., Pidoux I., Reiner A., Cöster L., Hassell J. R. Mammalian eyes and associated tissues contain molecules that are immunologically related to cartilage proteoglycan and link protein. J Cell Biol. 1982 Jun;93(3):910–920. doi: 10.1083/jcb.93.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wasteson A. Properties of fractionated chondroitin sulphate from ox nasal septa. Biochem J. 1971 May;122(4):477–485. doi: 10.1042/bj1220477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wasteson A., Westermark B., Lindahl U., Pontén J. Aggregation of feline lymphoma cells by hyaluronic acid. Int J Cancer. 1973 Jul 15;12(1):169–178. doi: 10.1002/ijc.2910120118. [DOI] [PubMed] [Google Scholar]
  25. Wight T. N., Hascall V. C. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J Cell Biol. 1983 Jan;96(1):167–176. doi: 10.1083/jcb.96.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES