Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Oct 15;223(2):441–445. doi: 10.1042/bj2230441

Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase.

H A Dailey, A Smith
PMCID: PMC1144316  PMID: 6497856

Abstract

The mechanism of porphyrin accumulation by tumours is not yet established. If metabolism aids porphyrin elimination, tumours, unlike normal tissues, may not metabolize porphyrins used clinically, such as proto-, haemato-, OO'-diacetyl-haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin. Proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are substrates for the mitochondrial enzyme ferrochelatase (EC 4.99.1.1), which can form haem analogues from exogenous porphyrins. The Km values for proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are 11, 22 and 23 microM respectively. However, OO'-diacetyl-haematoporphyrin is an effective competitive inhibitor with Ki of 11 microM. Hepatic ferrochelatase specific activity is 5.9 and 5.5 nmol of haem/h per mg of protein respectively in normal Buffalo rat and in those bearing the extrahepatic Morris 7288C hepatoma, and is only 0.13 nmol/h per mg in the hepatomas. Therefore low ferrochelatase activity in cancerous cells may provide one means whereby some porphyrins accumulate in tumours, and the ability of certain porphyrins to act as ferrochelatase inhibitors may provide another.

Full text

PDF
445

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck W. T., Dedmon M. L., Ouellette M. A. Biochemical basis for impaired drug metabolism in tumor-bearing rats. Evidence for altered regulation of hepatic microsomal hemeprotein synthesis. Biochem Pharmacol. 1982 Apr 15;31(8):1535–1543. doi: 10.1016/0006-2952(82)90378-1. [DOI] [PubMed] [Google Scholar]
  2. Berenbaum M. C., Bonnett R., Scourides P. A. In vivo biological activity of the components of haematoporphyrin derivative. Br J Cancer. 1982 Apr;45(4):571–581. doi: 10.1038/bjc.1982.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berns M. W., Dahlman A., Johnson F. M., Burns R., Sperling D., Guiltinan M., Siemens A., Walter R., Wright W., Hammer-Wilson M. In vitro cellular effects of hematoporphyrin derivative. Cancer Res. 1982 Jun;42(6):2325–2329. [PubMed] [Google Scholar]
  4. Cozzani I., Jori G., Reddi E., Fortunato A., Granati B., Felice M., Tomio L., Zorat P. Distribution of endogenous and injected porphyrins at the subcellular level in rat hepatocytes and in ascites hepatoma. Chem Biol Interact. 1981 Oct;37(1-2):67–75. doi: 10.1016/0009-2797(81)90166-6. [DOI] [PubMed] [Google Scholar]
  5. Dahlman A., Wile A. G., Burns R. G., Mason G. R., Johnson F. M., Berns M. W. Laser photoradiation therapy of cancer. Cancer Res. 1983 Jan;43(1):430–434. [PubMed] [Google Scholar]
  6. Dailey H. A., Fleming J. E. Bovine ferrochelatase. Kinetic analysis of inhibition by N-methylprotoporphyrin, manganese, and heme. J Biol Chem. 1983 Oct 10;258(19):11453–11459. [PubMed] [Google Scholar]
  7. Dougherty T. J., Kaufman J. E., Goldfarb A., Weishaupt K. R., Boyle D., Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978 Aug;38(8):2628–2635. [PubMed] [Google Scholar]
  8. Dougherty T. J. Photoradiation therapy for cutaneous and subcutaneous malignancies. J Invest Dermatol. 1981 Jul;77(1):122–124. doi: 10.1111/1523-1747.ep12479341. [DOI] [PubMed] [Google Scholar]
  9. Douglass H. O., Jr, Nava H. R., Weishaupt K. R., Boyle D., Sugerman M. G., Halpern E., Dougherty T. J. Intra-abdominal applications of hematoporphyrin photoradiation therapy. Adv Exp Med Biol. 1983;160:15–21. doi: 10.1007/978-1-4684-4406-3_3. [DOI] [PubMed] [Google Scholar]
  10. Friedkin M. The biochemist's outlook on cancer research. Fed Proc. 1973 Dec;32(12):2148–2153. [PubMed] [Google Scholar]
  11. Frydman R. B., Tomaro M. L., Buldain G., Awruch J., Díaz L., Frydman B. Specificity of heme oxygenase: a study with synthetic hemins. Biochemistry. 1981 Sep 1;20(18):5177–5182. doi: 10.1021/bi00521a012. [DOI] [PubMed] [Google Scholar]
  12. Gomer C. J., Dougherty T. J. Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res. 1979 Jan;39(1):146–151. [PubMed] [Google Scholar]
  13. Granick S., Beale S. I. Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol Relat Areas Mol Biol. 1978;46:33–203. doi: 10.1002/9780470122914.ch2. [DOI] [PubMed] [Google Scholar]
  14. Gregorie H. B., Jr, Horger E. O., Ward J. L., Green J. F., Richards T., Robertson H. C., Jr, Stevenson T. B. Hematoporphyrin-derivative fluorescence in malignant neoplasms. Ann Surg. 1968 Jun;167(6):820–828. doi: 10.1097/00000658-196806000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henderson R. W., Christie G. S., Clezy P. S., Lineham J. Haematoporphyrin diacetate: a probe to distinguish malignant from normal tissue by selective fluorescence. Br J Exp Pathol. 1980 Aug;61(4):345–350. [PMC free article] [PubMed] [Google Scholar]
  16. Jones M. S., Jones O. T. The structural organization of haem synthesis in rat liver mitochondria. Biochem J. 1969 Jul;113(3):507–514. doi: 10.1042/bj1130507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kato H., Konaka C., Ono J., Matsushima Y., Nishimiya K., Lay J., Sawa H., Shinohara H., Saito T., Kinoshita K. Effectiveness of HPD and radiation therapy in lung cancer. Adv Exp Med Biol. 1983;160:23–39. doi: 10.1007/978-1-4684-4406-3_4. [DOI] [PubMed] [Google Scholar]
  18. Koller M. E., Romslo I. Uptake of protoporphyrin IX by isolated rat liver mitochondria. Biochem J. 1980 May 15;188(2):329–335. doi: 10.1042/bj1880329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Romslo I., Husby P. Iron, porphyrin and heme transport in mitochondria. Int J Biochem. 1980;12(5-6):709–712. doi: 10.1016/0020-711x(80)90148-2. [DOI] [PubMed] [Google Scholar]
  20. Schacter B. A., Kurz P. Alterations in hepatic and splenic microsomal electron transport system components, drug metabolism, heme oxygenase activity, and cytochrome P-450 turnover in Murphy-Sturm lymphosarcoma-bearing rats. Cancer Res. 1982 Sep;42(9):3557–3564. [PubMed] [Google Scholar]
  21. Smith A., Morgan W. T. Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem J. 1979 Jul 15;182(1):47–54. doi: 10.1042/bj1820047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith A., Neuschatz T. Haematoporphyrin and OO'-diacetylhaematoporphyrin binding by serum and cellular proteins. Implications for the clearance of these photochemotherapeutic agents by cells. Biochem J. 1983 Aug 15;214(2):503–509. doi: 10.1042/bj2140503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson E. B., Tomkins G. M., Curran J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296–303. doi: 10.1073/pnas.56.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tipping E., Ketterer B., Koskelo P. The binding of porphyrins by ligandin. Biochem J. 1978 Mar 1;169(3):509–516. doi: 10.1042/bj1690509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  26. YONEYAMA Y., OHYAMA H., SUGITA Y., YOSHIKAWA H. Iron-chelating enzyme from duck erythrocytes. Biochim Biophys Acta. 1962 Aug 13;62:261–268. doi: 10.1016/0006-3002(62)90039-2. [DOI] [PubMed] [Google Scholar]
  27. Zalar G. L., Poh-Fitzpatrick M., Krohn D. L., Jacobs R., Harber L. C. Induction of drug photosensitization in man after parenteral exposure to hematoporphyrin. Arch Dermatol. 1977 Oct;113(10):1392–1397. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES