Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 1;223(3):577–586. doi: 10.1042/bj2230577

Binding of trichloromethyl radicals to lipids of the hepatic endoplasmic reticulum during tetrachloromethane metabolism.

B Link, H Dürk, D Thiel, H Frank
PMCID: PMC1144340  PMID: 6508732

Abstract

Metabolism of tetrachloromethane (carbon tetrachloride) by liver microsomal fraction under anaerobic conditions and in vivo leads to covalent binding of trichloromethyl radicals to lipids. The resulting covalently modified lipids contain two different types of fatty acids: a group of monomeric trichloromethyl fatty acid residues, usually with one double bond less than the precursor fatty acids, and a group of fatty acids that are not sufficiently volatile for gas chromatography. The liquid-chromatographic properties of the latter indicate high molecular mass, presumably due to cross-linking. The chemical structures of the monomeric fatty acids were elucidated, and these support the view that the most significant reactive metabolite of tetrachloromethane is the trichloromethyl radical. The isomer patterns of the monomeric trichloromethyl fatty acids in vitro and in vivo are almost identical, which shows that anaerobic incubation of tetrachloromethane with microsomal fraction very well reflects the processes involved in hepatotoxicity of tetrachloromethane in vivo.

Full text

PDF
584

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahr H. J., King L. J., Nastainczyk W., Ullrich V. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Biochem Pharmacol. 1980 Oct 15;29(20):2855–2861. doi: 10.1016/0006-2952(80)90022-2. [DOI] [PubMed] [Google Scholar]
  2. Ansari G. A., Moslen M. T., Reynolds E. S. Evidence for in vivo covalent binding of CCl3 derived from CCl4 to cholesterol of rat liver. Biochem Pharmacol. 1982 Nov 1;31(21):3509–3510. doi: 10.1016/0006-2952(82)90634-7. [DOI] [PubMed] [Google Scholar]
  3. BUTLER T. C. Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissues and tissue constituents. J Pharmacol Exp Ther. 1961 Dec;134:311–319. [PubMed] [Google Scholar]
  4. Benedetti A., Casini A. F., Ferrali M., Comporti M. Early alterations induced by carbon tetrachloride in the lipids of the membranes of the endoplasmic reticulum of the liver cell. I. Separation and partial characterization of altered lipids. Chem Biol Interact. 1977 May;17(2):151–156. doi: 10.1016/0009-2797(77)90081-3. [DOI] [PubMed] [Google Scholar]
  5. Bolt H. M., Kappus H., Buchter A., Bolt W. Disposition of (1,2-14C) vinyl chloride in the rat. Arch Toxicol. 1976 Jun 8;35(3):153–162. doi: 10.1007/BF00293562. [DOI] [PubMed] [Google Scholar]
  6. Díaz Gómez M. I., Castro J. A., de Ferreyra E. C., D'Acosta N., de Castro C. R. Irreversible binding of 14C from 14CCl4 to liver microsomal lipids and proteins from rats pretreated with compounds altering microsomal mixed-function oxygenase activity. Toxicol Appl Pharmacol. 1973 Aug;25(4):534–541. doi: 10.1016/0041-008x(73)90022-7. [DOI] [PubMed] [Google Scholar]
  7. Dürk H., Frank H. Carbon tetrachloride metabolism in vivo and exhalation of volatile alkanes: dependence upon oxygen partial pressure. Toxicology. 1984 Apr 2;30(3):249–257. doi: 10.1016/0300-483x(84)90096-9. [DOI] [PubMed] [Google Scholar]
  8. Fewster M. E., Burns B. J., Mead J. F. Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J Chromatogr. 1969 Aug 5;43(1):120–126. doi: 10.1016/s0021-9673(00)99173-8. [DOI] [PubMed] [Google Scholar]
  9. Frank H., Dürk H. Determination of alkanes in breath to monitor lipid peroxidation in the presence of volatile toxicants and metabolites. An optimized, automatic method. Arch Toxicol. 1983 Jul;53(3):213–223. doi: 10.1007/BF00316505. [DOI] [PubMed] [Google Scholar]
  10. Frank H., Link B. Anaerobic metabolism of carbon tetrachloride and formation of catabolically resistant phospholipids. Biochem Pharmacol. 1984 Apr 1;33(7):1127–1130. doi: 10.1016/0006-2952(84)90524-0. [DOI] [PubMed] [Google Scholar]
  11. Gordis E. Lipid metabolites of carbon tetrachloride. J Clin Invest. 1969 Jan;48(1):203–209. doi: 10.1172/JCI105969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halbreich A., Mager J. Early effects of carbon tetrachloride on the synthesis of phospholipids in the rat liver and their possible pathogenetic role in fatty liver induction. Biochim Biophys Acta. 1969 Dec 17;187(4):584–587. doi: 10.1016/0005-2760(69)90059-9. [DOI] [PubMed] [Google Scholar]
  13. Kieczka H., Kappus H. Oxygen dependence of CCl4-induced lipid peroxidation in vitro and in vivo. Toxicol Lett. 1980 Mar;5(3-4):191–196. doi: 10.1016/0378-4274(80)90058-2. [DOI] [PubMed] [Google Scholar]
  14. Kubic V. L., Anders M. W. Mechanism of the microsomal reduction of carbon tetrachloride and halothane. Chem Biol Interact. 1981 Mar 1;34(2):201–207. doi: 10.1016/0009-2797(81)90131-9. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Moore L., Rodman Davenport G., Landon E. J. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vivo administration of carbon tetrachloride. J Biol Chem. 1976 Feb 25;251(4):1197–1201. [PubMed] [Google Scholar]
  17. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  18. Poyer J. L., McCay P. B., Lai E. K., Janzen E. G., Davis E. R. Confirmation of assignment of the trichloromethyl radical spin adduct detected by spin trapping during 13C-carbon tetrachloride metabolism in vitro and in vivo. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1154–1160. doi: 10.1016/0006-291x(80)90540-9. [DOI] [PubMed] [Google Scholar]
  19. Recknagel R. O., Ghoshal A. K. Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity. Lab Invest. 1966 Jan;15(1 Pt 1):132–148. [PubMed] [Google Scholar]
  20. Reynolds E. S. Liver parenchymal cell injury. IV. Pattern of incorporation of carbon and chlorine from carbon tetrachloride into chemical constituents of liver in vivo. J Pharmacol Exp Ther. 1967 Jan;155(1):117–126. [PubMed] [Google Scholar]
  21. SMUCKLER E. A., BENDITT E. P. STUDIES ON CARBON TETRACHLORIDE INTOXICATION. 3. A SUBCELLULAR DEFECT IN PROTEIN SYNTHESIS. Biochemistry. 1965 Apr;4:671–679. doi: 10.1021/bi00880a009. [DOI] [PubMed] [Google Scholar]
  22. Seelig J., Hasselbach W. A spin label study of sarcoplasmic vesicles. Eur J Biochem. 1971 Jul 15;21(1):17–21. doi: 10.1111/j.1432-1033.1971.tb01434.x. [DOI] [PubMed] [Google Scholar]
  23. Slater T. F. Necrogenic action of carbon tetrachloride in the rat: a speculative mechanism based on activation. Nature. 1966 Jan 1;209(5018):36–40. doi: 10.1038/209036a0. [DOI] [PubMed] [Google Scholar]
  24. Trudell J. R., Bösterling B., Trevor A. J. Reductive metabolism of carbon tetrachloride by human cytochromes P-450 reconstituted in phospholipid vesicles: mass spectral identification of trichloromethyl radical bound to dioleoyl phosphatidylcholine. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2678–2682. doi: 10.1073/pnas.79.8.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Villarruel M. C., Díaz Gómez M. I., Castro J. A. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids. Toxicol Appl Pharmacol. 1975 Jul;33(1):106–114. doi: 10.1016/0041-008x(75)90249-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES