Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Dec 15;224(3):709–720. doi: 10.1042/bj2240709

Acyl-CoA synthetase and the peroxisomal enzymes of beta-oxidation in human liver. Quantitative analysis of their subcellular localization.

M Bronfman, N C Inestrosa, F O Nervi, F Leighton
PMCID: PMC1144505  PMID: 6240978

Abstract

The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.

Full text

PDF
720

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amar-Costesec A., Beaufay H., Wibo M., Thinès-Sempoux D., Feytmans E., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. II. Preparation and composition of the microsomal fraction. J Cell Biol. 1974 Apr;61(1):201–212. doi: 10.1083/jcb.61.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berge R. K., Vollset S. E., Farstad M. Intracellular localization of palmitoyl-CoA hydrolase and palmitoyl-CoA synthetase in human blood platelets and liver. Scand J Clin Lab Invest. 1980 May;40(3):271–278. doi: 10.3109/00365518009095578. [DOI] [PubMed] [Google Scholar]
  5. Bowers W. E., de Duve C. Lysosomes in lymphoid tissue. II. Intracellular distribution of acid hydrolases. J Cell Biol. 1967 Feb;32(2):339–348. doi: 10.1083/jcb.32.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bronfman M., Inestrosa N. C., Leighton F. Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1030–1036. doi: 10.1016/0006-291x(79)91512-2. [DOI] [PubMed] [Google Scholar]
  7. Bronfman M., Leighton F. Carnitine acyltransferase and acyl-coenzyme A hydrolase activities in human liver. Quantitative analysis of their subcellular localization. Biochem J. 1984 Dec 15;224(3):721–730. doi: 10.1042/bj2240721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  10. De La Iglesia F. A., Lewis J. E., Buchanan R. A., Marcus E. L., McMahon G. Light and electron microscopy of liver in hyperlipoproteinemic patients under long-term gemfibrozil treatment. Atherosclerosis. 1982 May;43(1):19–37. doi: 10.1016/0021-9150(82)90096-x. [DOI] [PubMed] [Google Scholar]
  11. Hanefeld M., Kemmer C., Leonhardt W., Kunze K. D., Jaross W., Haller H. Effects of p-chlorophenoxyisobutyric acid (CPIB) on the human liver. Atherosclerosis. 1980 Jun;36(2):159–172. doi: 10.1016/0021-9150(80)90225-7. [DOI] [PubMed] [Google Scholar]
  12. Hess R., Stäubli W., Riess W. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature. 1965 Nov 27;208(5013):856–858. doi: 10.1038/208856a0. [DOI] [PubMed] [Google Scholar]
  13. Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inestrosa N. C., Bronfman M., Leighton F. Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochem Biophys Res Commun. 1980 Jul 16;95(1):7–12. doi: 10.1016/0006-291x(80)90696-8. [DOI] [PubMed] [Google Scholar]
  15. Krisans S. K., Mortensen R. M., Lazarow P. B. Acyl-CoA synthetase in rat liver peroxisomes. Computer-assisted analysis of cell fractionation experiments. J Biol Chem. 1980 Oct 25;255(20):9599–9607. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lazarow P. B. Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem. 1978 Mar 10;253(5):1522–1528. [PubMed] [Google Scholar]
  19. Lazarow P. B., Shio H., Leroy-Houyet M. A. Specificity in the action of hypolipidemic drugs: increase of peroxisomal beta-oxidation largely dissociated from hepatomegaly and peroxisome proliferation in the rat. J Lipid Res. 1982 Feb;23(2):317–326. [PubMed] [Google Scholar]
  20. Lazarow P. B. Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science. 1977 Aug 5;197(4303):580–581. doi: 10.1126/science.195342. [DOI] [PubMed] [Google Scholar]
  21. Lazarow P. B., de Duve C. The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol. 1973 Nov;59(2 Pt 1):507–524. doi: 10.1083/jcb.59.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leighton F., Brandan E., Lazo O., Bronfman M. Subcellular fractionation studies on the organization of fatty acid oxidation by liver peroxisomes. Ann N Y Acad Sci. 1982;386:62–80. doi: 10.1111/j.1749-6632.1982.tb21408.x. [DOI] [PubMed] [Google Scholar]
  23. Leighton F., Coloma L., Koenig C. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol. 1975 Nov;67(2PT1):281–309. doi: 10.1083/jcb.67.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mannaerts G. P., Van Veldhoven P., Van Broekhoven A., Vandebroek G., Debeer L. J. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem J. 1982 Apr 15;204(1):17–23. doi: 10.1042/bj2040017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Markwell M. A., Bieber L. L., Tolbert N. E. Differential increase of hepatic peroxisomal, mitochondrial and microsomal carnitine acyltransferases in clofibrate-fed rats. Biochem Pharmacol. 1977 Sep 15;26(18):1697–1702. doi: 10.1016/0006-2952(77)90147-2. [DOI] [PubMed] [Google Scholar]
  27. Markwell M. A., McGroarty E. J., Bieber L. L., Tolbert N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973 May 25;248(10):3426–3432. [PubMed] [Google Scholar]
  28. Noguchi T., Takada Y. Peroxisomal localization of alanine: glyoxylate aminotransferase in human liver. Arch Biochem Biophys. 1979 Sep;196(2):645–647. doi: 10.1016/0003-9861(79)90319-9. [DOI] [PubMed] [Google Scholar]
  29. Noguchi T., Takada Y. Peroxisomal localization of serine:pyruvate aminotransferase in human liver. J Biol Chem. 1978 Nov 10;253(21):7598–7600. [PubMed] [Google Scholar]
  30. RAY W. J., Jr, ROSCELLI G. A. A KINETIC STUDY OF THE PHOSPHOGLUCOMUTASE PATHWAY. J Biol Chem. 1964 Apr;239:1228–1236. [PubMed] [Google Scholar]
  31. Wattiaux R., Wattiaux-De Coninck S., Ronveaux-dupal M. F., Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol. 1978 Aug;78(2):349–368. doi: 10.1083/jcb.78.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES