Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Mar 1;226(2):461–468. doi: 10.1042/bj2260461

Factors determining the subunit composition of tropomyosin in mammalian skeletal muscle.

D H Heeley, G K Dhoot, S V Perry
PMCID: PMC1144733  PMID: 3994668

Abstract

Adult rat fast-twitch skeletal muscle such as extensor digitorum longus contains alpha- and beta-tropomyosin subunits, as is the case in the corresponding muscles of rabbit. Adult rat soleus muscle contains beta-, gamma- and delta-tropomyosins, but no significant amounts of alpha-tropomyosin. Evidence for the presence of phosphorylated forms of at least three of the four tropomyosin subunit isoforms was obtained, particularly in developing muscle. Immediately after birth alpha- and beta-tropomyosins were the major components of skeletal muscle, in both fast-twitch and slow-twitch muscles. Differentiation into slow-twitch skeletal muscles was accompanied by a fall in the amount of alpha-tropomyosin subunit and its replacement with gamma- and delta-subunits. After denervation and during regeneration after injury, the tropomyosin composition of slow-twitch skeletal muscle changed to that associated with fast-twitch muscle. Thyroidectomy slowed down the changes in tropomyosin composition resulting from the denervation of soleus muscle. The results suggest that the 'ground state' of tropomyosin-gene expression in the skeletal muscle gives rise to alpha- and beta-tropomyosin subunits. Innervation by a 'slow-twitch' nerve is essential for the expression of the genes controlling gamma- and delta-subunits. There appears to be reciprocal relationship between expression of the gene controlling the synthesis of alpha-tropomyosin and those controlling the synthesis of gamma- and delta-tropomyosin subunits.

Full text

PDF
462

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad Z., DePaoli-Roach A. A., Roach P. J. Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthase. J Biol Chem. 1982 Jul 25;257(14):8348–8355. [PubMed] [Google Scholar]
  2. Amphlett G. W., Syska H., Perry S. V. The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle. FEBS Lett. 1976 Mar 15;63(1):22–26. doi: 10.1016/0014-5793(76)80186-x. [DOI] [PubMed] [Google Scholar]
  3. Anderson N. G., Anderson N. L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem. 1978 Apr;85(2):331–340. doi: 10.1016/0003-2697(78)90229-4. [DOI] [PubMed] [Google Scholar]
  4. Anderson N. L., Anderson N. G. Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem. 1978 Apr;85(2):341–354. doi: 10.1016/0003-2697(78)90230-0. [DOI] [PubMed] [Google Scholar]
  5. Billeter R., Heizmann C. W., Reist U., Howald H., Jenny E. alpha- and beta-tropomyosin in typed single fibers of human skeletal muscle. FEBS Lett. 1981 Sep 14;132(1):133–136. doi: 10.1016/0014-5793(81)80446-2. [DOI] [PubMed] [Google Scholar]
  6. Carraro U., Catani C., Dalla Libera L., Vascon M., Zanella G. Differential distribution of tropomyosin subunits in fast and slow rat muscles and its change in long-term denervated hemidiaphragm. FEBS Lett. 1981 Jun 15;128(2):233–236. doi: 10.1016/0014-5793(81)80088-9. [DOI] [PubMed] [Google Scholar]
  7. Cummins P., Perry S. V. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J. 1974 Jul;141(1):43–49. doi: 10.1042/bj1410043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cummins P., Perry S. V. The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J. 1973 Aug;133(4):765–777. doi: 10.1042/bj1330765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dabrowska R., Sosiński J., Drabikowski W. Dimerization of the polypeptide chains of skeletal muscle tropomyosin. Biochim Biophys Acta. 1983 Mar 30;743(3):331–337. doi: 10.1016/0167-4838(83)90390-4. [DOI] [PubMed] [Google Scholar]
  10. Dhoot G. K., Gell P. G., Perry S. V. The localization of the different forms of troponin I in skeletal and cardiac muscle cells. Exp Cell Res. 1978 Dec;117(2):357–370. doi: 10.1016/0014-4827(78)90149-0. [DOI] [PubMed] [Google Scholar]
  11. Dhoot G. K., Perry S. V. Effect of denervation at birth on the development of skeletal muscle cell types in the rat. Exp Neurol. 1983 Oct;82(1):131–142. doi: 10.1016/0014-4886(83)90248-0. [DOI] [PubMed] [Google Scholar]
  12. Dhoot G. K., Perry S. V. Effect of thyroidectomy on the distribution of the fast and slow forms of troponin I in rat soleus muscle. FEBS Lett. 1981 Oct 26;133(2):225–229. doi: 10.1016/0014-5793(81)80511-x. [DOI] [PubMed] [Google Scholar]
  13. Dhoot G. K., Perry S. V. The components of the troponin complex and development in skeletal muscle. Exp Cell Res. 1980 May;127(1):75–87. doi: 10.1016/0014-4827(80)90416-4. [DOI] [PubMed] [Google Scholar]
  14. Dhoot G. K., Perry S. V., Vrbova G. Changes in the distribution of the components of the troponin complex in muscle fibers after cross-innervation. Exp Neurol. 1981 Jun;72(3):513–530. doi: 10.1016/0014-4886(81)90001-7. [DOI] [PubMed] [Google Scholar]
  15. Heeley D. H., Dhoot G. K., Frearson N., Perry S. V., Vrbova G. The effect of cross-innervation on the tropomyosin composition of rabbit skeletal muscle. FEBS Lett. 1983 Feb 21;152(2):282–286. doi: 10.1016/0014-5793(83)80396-2. [DOI] [PubMed] [Google Scholar]
  16. Heeley D. H., Heeley D. A., Moir A. J., Perry S. V. Phosphorylation of tropomyosin during development in mammalian striated muscle. FEBS Lett. 1982 Sep 6;146(1):115–118. doi: 10.1016/0014-5793(82)80716-3. [DOI] [PubMed] [Google Scholar]
  17. Hofmann F., Beavo J. A., Bechtel P. J., Krebs E. G. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem. 1975 Oct 10;250(19):7795–7801. [PubMed] [Google Scholar]
  18. Kardami E., Montarras D., Fiszman M. Fast and slow chicken skeletal muscles contain different alpha and beta tropomyosins. Biochem Biophys Res Commun. 1983 Jan 14;110(1):147–154. doi: 10.1016/0006-291x(83)91272-x. [DOI] [PubMed] [Google Scholar]
  19. Matsuda R., Spector D. H., Strohman R. C. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev Biol. 1983 Dec;100(2):478–488. doi: 10.1016/0012-1606(83)90240-3. [DOI] [PubMed] [Google Scholar]
  20. Montarras D., Fiszman M. Y., Gros F. Changes in tropomyosin during development of chick embryonic skeletal muscles in vivo and during differentiation of chick muscle cells in vitro. J Biol Chem. 1982 Jan 10;257(1):545–548. [PubMed] [Google Scholar]
  21. Montgomery K., Mak A. S. In vitro phosphorylation of tropomyosin by a kinase from chicken embryo. J Biol Chem. 1984 May 10;259(9):5555–5560. [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. PRICE H. M., HOWES E. L., Jr, BLUMBERG J. M. ULTRASTRUCTURAL ALTERATIONS IN SKELETAL MUSCLE FIBERS INJURED BY COLD. I. THE ACUTE DEGENERATIVE CHANGES. Lab Invest. 1964 Oct;13:1264–1278. [PubMed] [Google Scholar]
  24. Perry S. V., Dhoot G. K., Heeley D. H. Muscle protein isoforms and physiological function: role of nerve in gene expression. Biochem Soc Symp. 1984;49:137–147. [PubMed] [Google Scholar]
  25. Roy R. K., Sreter F. A., Sarkar S. Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev Biol. 1979 Mar;69(1):15–30. doi: 10.1016/0012-1606(79)90271-9. [DOI] [PubMed] [Google Scholar]
  26. Rubinstein N. A., Kelly A. M. Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat. Dev Biol. 1978 Feb;62(2):473–485. doi: 10.1016/0012-1606(78)90229-4. [DOI] [PubMed] [Google Scholar]
  27. Salviati G., Betto R., Danieli Betto D. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres. Biochem J. 1982 Nov 1;207(2):261–272. doi: 10.1042/bj2070261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shih T. Y., Weeks M. O., Young H. A., Scholnick E. M. Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology. 1979 Jul 15;96(1):64–79. doi: 10.1016/0042-6822(79)90173-9. [DOI] [PubMed] [Google Scholar]
  29. Stadel J. M., Nambi P., Shorr R. G., Sawyer D. F., Caron M. G., Lefkowitz R. J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3173–3177. doi: 10.1073/pnas.80.11.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinbach J. H., Schubert D., Eldridge L. Changes in cat muscle contractile proteins after prolonged muscle inactivity. Exp Neurol. 1980 Mar;67(3):655–669. doi: 10.1016/0014-4886(80)90134-x. [DOI] [PubMed] [Google Scholar]
  31. Wegener A. D., Jones L. R. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem. 1984 Feb 10;259(3):1834–1841. [PubMed] [Google Scholar]
  32. Zoller M. J., Kerlavage A. R., Taylor S. S. Structural comparisons of cAMP-dependent protein kinases I and II from porcine skeletal muscle. J Biol Chem. 1979 Apr 10;254(7):2408–2412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES