Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 1;227(1):105–112. doi: 10.1042/bj2270105

Stereospecific modulation of the calcium channel in human erythrocytes by cholesterol and its oxidized derivatives.

L Neyses, R Locher, M Stimpel, R Streuli, W Vetter
PMCID: PMC1144814  PMID: 2581557

Abstract

To study the effect of cholesterol and its pathophysiologically important oxidized derivatives (OSC) on the calcium entry channel, the human red blood cell was used as a model system. The calcium ejecting adenosinetriphosphatase (ATPase) was inhibited by vanadate. The cells were loaded with OSC at concentrations between 1.25 X 10(-5) and 25 X 10(-5) mol/l. 22-Hydroxycholesterol, cholestan-3 beta,5 alpha,6 beta-triol, 5 alpha-cholestan-3 beta-ol,3 beta,5 alpha-dihydroxycholestan-6-one and 3 beta-hydroxy-5 alpha-cholestan-7-one stimulated 45Ca2+ influx by up to almost 90%, whereas 25-hydroxycholesterol, 7 beta-hydroxycholesterol, 20 alpha-hydroxycholesterol and 7-oxocholesterol inhibited influx by up to 75%. Both stimulation and inhibition were dependent on the amount of OSC incorporated into the membrane. More than 90% of the total modification of calcium influx by OSC was accounted for by an influence on the nitrendipine-inhibitable part of influx. Enrichment of cholesterol in the membrane greatly stimulated, and cholesterol depletion inhibited, Ca2+ influx. These results demonstrate that cholesterol and its oxidized derivatives are able to modulate the calcium channel in human red blood cells in a highly stereospecific manner.

Full text

PDF
110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks C. J., Steel G., Gilbert J. D., Harland W. A. Lipids of human atheroma. 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis. 1971 Mar-Apr;13(2):223–237. doi: 10.1016/0021-9150(71)90025-6. [DOI] [PubMed] [Google Scholar]
  2. Cooper R. A., Arner E. C., Wiley J. S., Shattil S. J. Modification of red cell membrane structure by cholesterol-rich lipid dispersions. A model for the primary spur cell defect. J Clin Invest. 1975 Jan;55(1):115–126. doi: 10.1172/JCI107901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper R. A., Leslie M. H., Fischkoff S., Shinitzky M., Shattil S. J. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. Biochemistry. 1978 Jan 24;17(2):327–331. doi: 10.1021/bi00595a021. [DOI] [PubMed] [Google Scholar]
  4. Egli U. H., Streuli R. A., Dubler E. Influence of oxygenated sterol compounds on phase transitions in model membranes. A study by differential scanning calorimetry. Biochemistry. 1984 Jan 3;23(1):148–152. doi: 10.1021/bi00296a024. [DOI] [PubMed] [Google Scholar]
  5. Fröberg S. O. Concentration of cholesterol and triglycerides in skeletal muscle of healthy men and myocardial infarction patients. Acta Med Scand. 1973 Dec;194(6):553–558. doi: 10.1111/j.0954-6820.1973.tb19491.x. [DOI] [PubMed] [Google Scholar]
  6. Gottlieb M. H., Eanes E. D. On phase transitions in erythrocyte membranes and extracted membrane lipids. Biochim Biophys Acta. 1974 Dec 24;373(3):519–522. doi: 10.1016/0005-2736(74)90033-9. [DOI] [PubMed] [Google Scholar]
  7. Hsu R. C., Kanofsky J. R., Yachnin S. The formation of echinocytes by the insertion of oxygenated sterol compounds into red cell membranes. Blood. 1980 Jul;56(1):109–117. [PubMed] [Google Scholar]
  8. Imai H., Werthessen N. T., Subramanyam V., LeQuesne P. W., Soloway A. H., Kanisawa M. Angiotoxicity of oxygenated sterols and possible precursors. Science. 1980 Feb 8;207(4431):651–653. doi: 10.1126/science.7352277. [DOI] [PubMed] [Google Scholar]
  9. Kandutsch A. A., Chen H. W. Consequences of blocked sterol synthesis in cultured cells. DNA synthesis and membrane composition. J Biol Chem. 1977 Jan 25;252(2):409–415. [PubMed] [Google Scholar]
  10. Kandutsch A. A., Chen H. W. Regulation of sterol synthesis in cultured cells by oxygenated derivatives of cholesterol. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):415–424. doi: 10.1002/jcp.1040850408. [DOI] [PubMed] [Google Scholar]
  11. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  12. Miller G. J. Cholesterol content of the human atrium is related to plasma lipoprotein levels. Atherosclerosis. 1979 Nov;34(3):349–351. doi: 10.1016/s0021-9150(79)80013-1. [DOI] [PubMed] [Google Scholar]
  13. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  14. ROSE H. G., OKLANDER M. IMPROVED PROCEDURE FOR THE EXTRACTION OF LIPIDS FROM HUMAN ERYTHROCYTES. J Lipid Res. 1965 Jul;6:428–431. [PubMed] [Google Scholar]
  15. Ranganathan S., Harmony J. A., Jackson R. J. Effect of Ca2+ blocking agents on the metabolism of low density lipoproteins in human skin fibroblasts. Biochem Biophys Res Commun. 1982 Jul 16;107(1):217–224. doi: 10.1016/0006-291x(82)91691-6. [DOI] [PubMed] [Google Scholar]
  16. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
  17. Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1981;50:585–621. doi: 10.1146/annurev.bi.50.070181.003101. [DOI] [PubMed] [Google Scholar]
  18. Schubert D., Boss K. Band 3 protein-cholesterol interactions in erythrocyte membranes. Possible role in anion transport and dependency on membrane phospholipid. FEBS Lett. 1982 Dec 13;150(1):4–8. doi: 10.1016/0014-5793(82)81295-7. [DOI] [PubMed] [Google Scholar]
  19. Streuli R. A., Kanofsky J. R., Gunn R. B., Yachnin S. Diminished osmotic fragility of human erythrocytes following the membrane insertion of oxygenated sterol compounds. Blood. 1981 Aug;58(2):317–325. [PubMed] [Google Scholar]
  20. Tanaka R. D., Edwards P. A., Lan S. F., Fogelman A. M. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in avian myeloblasts. Mode of action of 25-hydroxycholesterol. J Biol Chem. 1983 Nov 10;258(21):13331–13339. [PubMed] [Google Scholar]
  21. Taylor C. B., Peng S. K., Werthessen N. T., Tham P., Lee K. T. Spontaneously occurring angiotoxic derivatives of cholesterol. Am J Clin Nutr. 1979 Jan;32(1):40–57. doi: 10.1093/ajcn/32.1.40. [DOI] [PubMed] [Google Scholar]
  22. Varecka L., Carafoli E. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J Biol Chem. 1982 Jul 10;257(13):7414–7421. [PubMed] [Google Scholar]
  23. Yachnin S., Streuli R. A., Gordon L. I., Hsu R. C. Alteration of peripheral blood cell membrane function and morphology by oxygenated sterols; a membrane insertion hypothesis. Curr Top Hematol. 1979;2:245–271. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES