Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2024 Feb 4;29(3):183–191. doi: 10.1111/gtc.13098

The anti‐inflammatory effect of metformin: The molecular targets

Natsumi Sakata 1,
PMCID: PMC11448366  PMID: 38311861

Abstract

Metformin is an anti‐diabetic drug. Metformin mainly inhibits gluconeogenesis in the liver and reduces blood sugar. In addition to the anti‐diabetic effects, many studies have revealed that metformin has anti‐inflammatory effects. Various molecules were suggested to be the target of the metformin's anti‐inflammatory effects. However, the conclusion is not clear. Metformin is related to a number of molecules and the identification of the main target in anti‐inflammatory effects leads to the understanding of inflammation and metformin. In this article, I discuss each suggested molecule, involved mechanisms, and their relationship with various diseases.

Keywords: cardiovascular disease, cytokine, diabetes, inflammation, metformin


Variable molecules were suggested to be the target of the anti‐inflammatory effects of metformin; however, the conclusion is not clear. In this article, I discuss each molecule, suggested mechanisms, and their relationship with variable diseases.

graphic file with name GTC-29-183-g001.jpg

1. INTRODUCTION

Metformin is an anti‐diabetic drug used as the first line drug (Flory & Lipska, 2019). Metformin inhibits gluconeogenesis in the liver, and this reduces the blood sugar levels (Rena et al., 2017). In addition, metformin reduces cardiovascular events (Rena et al., 2017; UKPDS group, 1998) and has renoprotective effect (Koroglu‐Aydin et al., 2021). It was also reported that metformin prolongs the life span in Caenorhabditis elegans (Chen et al., 2017). Metformin is a multi‐functional drug and metformin use will increase in treatment and prevention of many kinds of diseases.

Metformin regulates multiple cell functions: cell proliferation (Della Corte et al., 2016; Wheaton et al., 2014), glucose metabolism (Argaud et al., 1993; Foretz et al., 2010), lipid metabolism (Luo et al., 2017; Zhou et al., 2001), mitochondrial function (Soberanes et al., 2019; Wheaton et al., 2014), and inflammation (Bharath et al., 2020; Horiuchi et al., 2017; Kang et al., 2014; Tsoyi et al., 2011). This multiple regulation may contribute to the multiple effects of metformin in whole body as mentioned above.

Diabetes accompanies various pathologies: insulin resistance, vascular damage followed by cardiovascular diseases, retinopathy, and chronic kidney disease. Clinical studies indicated that metformin in human body reduces gluconeogenesis in the liver and also insulin resistance (Cree‐Green et al., 2019; Malin et al., 2012). In this several decades, many studies revealed that the inflammation is critical in the progression of diabetes (Borst, 2004; Forrester et al., 2020; J. C. Jha et al., 2022; Karam et al., 2017; Senn et al., 2002; Sharif et al., 2021; Winiarska et al., 2021). Around the same time, it was shown that metformin has anti‐inflammatory effects (Kim et al., 2014; Volarevic et al., 2015; Yuan et al., 2012). Insulin resistance is a key metabolic change in diabetes and is tightly related to chronic inflammation (Rohm et al., 2022; Saltiel & Olefsky, 2017). Inhibition of chronic inflammation is one of the strategies taken to reduce insulin resistance in diabetes. The inflammatory pathways via TNFα, TLR4, NFκB, and NLRP3, improves insulin resistance (Akash et al., 2018; Arkan et al., 2005; Moller, 2000; Shi et al., 2006; Vandanmagsar et al., 2011) and these pathways are the targets of metformin which will be mentioned in following sections. Taken together, metformin may ameliorate diabetes in two ways: regulation of glucose metabolism in liver and inhibition of inflammation.

Many studies have tried to determine the molecular targets of metformin and to reveal the anti‐inflammatory mechanisms. However, we do not know which molecule is the major and critical target of metformin. When we identify the most important target of metformin, we could use metformin and its derivatives as a more selective and effective anti‐inflammatory drug. Comprehensive understanding and comparison of the target molecules are necessary.

2. TARGET MOLECULES

The molecules mentioned in this section are shown in Table 1.

TABLE 1.

Target molecules of metformin in inflammation.

Molecules Direct interaction with metformin Related diseases and pathologies except INFLAMMATION Reference
TNFα No Insulin resistance Tsoyi et al. (2011), Horiuchi and Sakata et al. (2017)
IL‐6 No Immunity Tsoyi et al. (2011), Kim et al. (2014). Xiong et al. (2021)
TGFβ No Fibrosis of blood vessel Cheng et al (2016). Chiang et al. (2017)
NF‐κB Predicted Chronic inflammatory disease, arteriosclerosis Isoda et al. (2006), Chiang et al. (2017), Alzokaky et al. (2023)
HMGB1 Yes Cell damage, arteriosclerosis Tsoyi et al. (2011), Huang et al. (2018), Horiuchi and Sakata et al. (2017)
TLR4 No Cell damage, infection Isoda et al. (2006), Chiang et al. (2017), Horiuchi and Sakata et al. (2017)
Caspase‐3 Predicted Apoptosis, cell migration Yuan et al. (2012), Mxinwa et al. (2022), Alzokaky et al. (2023)
Caspase‐8 No Apoptosis, cell migration Yuan et al. 2012
NRF2 No Cardiovascular disease, neurodegenerative disease Dwivedi et al (2023)
AMPK Yes Metabolism, cell growh Zhou et al. (2011), Kalender et al. 2010, Zhang et al. (2012)

2.1. Cytokines

Cytokines are important molecules in inflammatory response and are recently focused as the therapeutic target for various diseases (Fajgenbaum & June, 2020; Lippitz, 2013; Propper & Balkwill, 2022). Therefore, cytokine targeting therapy has been focused on as a novel therapy for various diseases: cancer (Berraondo et al., 2019; Dougan et al., 2018), heart failure (Hanna & Frangogiannis, 2020), rheumatoid arthritis (RA) (Noack & Miossec, 2017), and lymphohistiocytosis (H. Q. Zhang et al., 2022).

Tumor necrosis factor α (TNFα) is one of the critical cytokines in many kinds of disease, such as RA (D. I. Jang et al., 2021). A study using mice reported that TNFα is related to the renoprotective effect of metformin (Christensen et al., 2016). Metformin inhibits lipopolysaccharide (LPS)‐induced TNFα production in vitro (Tsoyi et al., 2011) and in vivo (Horiuchi et al., 2017). Since TNFα inhibitors, such as infliximab, etanercept, and adalimumab, are effective in RA and other autoimmune diseases (Lim et al., 2018), metformin's anti‐TNFα function could be effective in these diseases. It is also known that TNFα is related to the insulin resistance in type 2 diabetes (Akash et al., 2018; Moller, 2000). The reduction of TNFα could be a part of the anti‐diabetic mechanism of metformin. However, the direct target of metformin that regulates TNFα production is unknown.

Interleukin‐6 (IL‐6) is a cytokine produced in stromal cells and inflammatory cells that stimulates lymphocytes (Hunter & Jones, 2015). Metformin inhibits IL‐6 expression in macrophages (Kim et al., 2014; Tsoyi et al., 2011; Xiong et al., 2021) and endothelial cells (Isoda et al., 2006) in inflammatory condition. Metformin also inhibits IL‐6‐induced inflammatory response (Cansby et al., 2014; Xiong et al., 2021). Considering these results, metformin regulates IL‐6 function via two mechanisms, inhibition of IL‐6 expression and of its downstream signaling, although whether metformin directly interacts with IL‐6 is unclear.

Transforming growth factor β (TGFβ) is a cytokine that regulates immune response and fibrillation in wound healing process (Morikawa et al., 2016; Travis & Sheppard, 2014). It was shown that metformin inhibits TGFβ expression (Chiang et al., 2017) and TGFβ‐induced cell proliferation as well as migration (Cheng & Hao, 2016). These results could be related to the metformin's cardioprotective and vasoprotective effects because TGFβ is an important factor in fibrosis in various tissues including blood vessels (Chung et al., 2021; Cunha et al., 2017).

Since many kinds of cells, not only inflammatory cells, interact via cytokines, metformin should have the effect on a number of cell types. In other words, metformin's effect is not specific to cell type or cytokine, and this could be both advantage and disadvantage.

2.2. Nuclear factor‐κB

Nuclear factor‐κB (NF‐κB) is a key transcriptional factor which is activated by multiple stimuli (Hayden & Ghosh, 2008; Lawrence, 2009) and regulates various inflammatory factors, TNFα, IL‐1β, and IL‐6 and such (Tak & Firestein, 2001). NF‐κB activation is associated with many chronic inflammatory diseases: ulcerative colitis, multiple sclerosis, and atherosclerosis (Tak & Firestein, 2001). Several studies revealed that metformin targets NF‐κB pathway to inhibit inflammation (Chiang et al., 2017; Isoda et al., 2006). In addition, a recent study suggested that metformin directory binds NF‐κB (Alzokaky et al., 2023). As mentioned above, metformin regulates various inflammatory factors including NF‐κB regulated factors. Considering these findings, NF‐κB may be a key target of metformin. This means metformin might be effective on chronic inflammatory diseases mentioned above.

2.3. High mobility group box 1

High mobility group box 1 (HMGB1) is a multi‐functional protein. HMGB1 functions in both intracellular and extracellular space (Kang et al., 2014). HMGB1 localizes mainly in the nucleus. However, in some conditions, HMGB1 is released to extracellular space passively from damaged cells (Venereau et al., 2016) and actively from activated inflammatory cells (Bonaldi et al., 2003). Released HMGB1 is a kind of damage‐associated molecular patterns (DAMPs) and functions like cytokine and chemokine to induce inflammatory responses (Rubartelli & Lotze, 2007; Venereau et al., 2015). Also, the extracellular HMGB1 is a ligand of TLR4 (mentioned in the following section). It has been revealed that metformin inhibits inflammation via HMGB1 in three ways: inhibition of expression (Huang et al., 2018), reduction of release from macrophage cells (Tsoyi et al., 2011), and direct binding to extracellular HMGB1 (Alzokaky et al., 2023; Horiuchi et al., 2017). HMGB1 is a sole extracellular factor that the direct binding is validated by biochemical analysis (Horiuchi et al., 2017).

2.4. Toll‐like receptor 4

Toll‐like receptor 4 (TLR4) is one of the pattern recognition receptors expressed by inflammatory cells like macrophages and neutrophils. TLR4 activation induces inflammatory response especially against the infection of bacteria, viruses, and fungus (Novus Biologicals, 2014). TLR4 recognizes LPS, a component of Gram‐negative bacteria, and some kinds of DAMPs: HMGB1, S100 calcium‐binding protein A4 (S100A4), HSPB5 and such (Bolourani et al., 2021; Mzyk et al., 2022). DAMPs are intracellular molecules that are released to extracellular space from the damaged cells. Thus, TLR4 recognizes both exogenous and endogenous inflammatory factors. TLR4 induces the activation or transcription of the metformin targets mentioned above: NFκB (A. K. Jha et al., 2021; Takeuchi & Akira, 2010), TNFα (Caldwell et al., 2014; Rusai et al., 2010), IL‐6 (Abou‐Hany et al., 2018; A. K. Jha et al., 2021), and TGFβ (Seki et al., 2007). In addition, HMGB1, a direct target of metformin, is an endogenous ligand of TLR4 (Alzokaky et al., 2023; Horiuchi et al., 2017). These results are suggesting the relationship between metformin and TLR4 signaling pathway via downstream factors. In other words, TLR4 pathway includes many factors which regulates inflammation and metformin works as TLR4 pathway inhibitor. This may be a reason why many factors were identified as metformin targets.

2.5. Caspases

Caspase is a cysteine protease family involved in cell cycle, cell differentiation, apoptosis, and inflammation (Eskandari & Eaves, 2022; Van Opdenbosch & Lamkanfi, 2019). Many factors, like pathogen, DAMPs, and cytokines activate the caspases and induce inflammation and cell death (Van Opdenbosch & Lamkanfi, 2019). Especially caspase‐3, ‐7, and ‐8 are important in inflammatory response (Newton et al., 2021). It was shown that metformin inhibited the activity of caspase‐3 and ‐8 in LPS‐induced inflammation model (Yuan et al., 2012) and the expression of caspase‐3 in lymphocytes (Mxinwa et al., 2022). In addition, a computer prediction suggested that metformin directly binds caspase‐3 (Alzokaky et al., 2023). Metformin's apoptosis regulation may have both pathways, caspase‐dependent and ‐independent (J. H. Jang et al., 2020; Rosidi et al., 2023; Zheng et al., 2020). The interaction between caspase family and metformin could be the mechanism behind multiple functions of metformin.

2.6. Nuclear factor erythroid 2‐related factor 2

The oxidative stress is tightly related to the inflammation and aggravates cardiovascular disease (Guzik & Touyz, 2017; Papaconstantinou, 2019), sepsis (Joffre & Hellman, 2021), nonalcoholic fatty liver disease (NAFLD) (Paradies et al., 2014), cancer (Tsang et al., 2022), and neurodegenerative disease (Chen & Zhong, 2014; Sumien et al., 2021). Nuclear factor erythroid 2‐related factor 2 (NRF2) is a transcriptional factor and targets antioxidant genes and has an anti‐inflammatory function (Saha et al., 2020). In NAFLD model mice, metformin increased NRF2 and NRF2 target gene expression in the liver (Dwivedi & Jena, 2023). The molecular mechanism and interaction between metformin and NRF2 are unclear and the function of metformin in the response to the oxidative stress should be studied more.

2.7. AMPK

AMPK is the most investigated metformin target (Agius et al., 2020; Zhou et al., 2001). Metformin activates AMPK by direct binding (Y. Zhang et al., 2012). However, later studies indicated that metformin functions both AMPK‐dependently (Foretz et al., 2010; Zhou et al., 2001) and AMPK‐independently (Ben Sahra et al., 2011; Deschemin et al., 2017; Kalender et al., 2010; Moonira et al., 2020). Other studies showed that metformin activates AMPK by increasing adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio (Foretz et al., 2010; Stephenne et al., 2011). AMPK modifies the general and many kinds of cell functions, like metabolism, cell growth, and inflammation (Garcia & Shaw, 2017; Trefts & Shaw, 2021). It is true that AMPK is a major metformin's target, but it is difficult to determine whether AMPK is an inflammation‐specific target or not.

3. CONCLUSION

Metformin has the anti‐inflammatory effects and is beneficial in the treatment of various diseases. One of the metformin's anti‐diabetic mechanisms is the inhibition of gluconeogenesis in the liver and it is considered that metformin's main target organ is the liver (Agius et al., 2020; Flory & Lipska, 2019). This may be the reason why many studies use the liver inflammation model to reveal the anti‐inflammatory mechanism of metformin (Hadi et al., 2012; Horiuchi et al., 2017; Poon et al., 2003; Yuan et al., 2012). This is reasonable but we need much more studies about metformin in other organs: kidney, blood vessels, muscles, and so on, especially the organs related to the insulin resistance. It is well known that the blood vessel in diabetic patients is damaged by chronic inflammation (Kenny & Abel, 2019; Li et al., 2023; Wang et al., 2020). The reduction of inflammation in blood vessel could be the mechanism of cardioprotective effects of metformin.

A number of molecules are suggested to be a target of metformin (Table 1). It is still unclear which molecule is the most critical. Horiuchi and Sakata et al. (2017) suggested that metformin binds negative charge domain in HMGB1 by its positive charge. However, no study has verified this. In addition, no study has shown the structure of metformin‐target complex obtained by X‐ray crystallography or cryo‐electron microscopy. Therefore, the protein structure or the amino acid sequence which is common and specific for metformin interaction is unknown. It seems that metformin interacts with various proteins with low specificity. It is reasonable to find out whether molecules other than proteins, such as nucleotide, lipid, and carbohydrate can be the direct target of metformin.

ACKNOWLEDGMENTS

This review received no funding. The Internet system of Tohoku University through which one can access many scientific journals enabled me to write this article. I would like to express my sincere gratitude to Keigo Takeuchi for the proofreading.

Sakata, N. (2024). The anti‐inflammatory effect of metformin: The molecular targets. Genes to Cells, 29(3), 183–191. 10.1111/gtc.13098

Communicated by: Eisuke Nishida

REFERENCES

  1. Abou–Hany, H. O. , Atef, H. , Said, E. , Elkashef, H. A. , & Salem, H. A. (2018). Crocin mediated amelioration of oxidative burden and inflammatory cascade suppresses diabetic nephropathy progression in diabetic rats. Chemico–Biological Interactions, 284, 90–100. 10.1016/j.cbi.2018.02.001 [DOI] [PubMed] [Google Scholar]
  2. Agius, L. , Ford, B. E. , & Chachra, S. S. (2020). The metformin mechanism on gluconeogenesis and AMPK activation: The metabolite perspective. International Journal of Molecular Sciences, 21(9), 3240. 10.3390/ijms21093240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akash, M. S. H. , Rehman, K. , & Liaqat, A. (2018). Tumor necrosis factor–alpha: Role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. Journal of Cellular Biochemistry, 119(1), 105–110. 10.1002/jcb.26174 [DOI] [PubMed] [Google Scholar]
  4. Alzokaky, A. A. , Al–Karmalawy, A. A. , Saleh, M. A. , Abdo, W. , Farage, A. E. , Belal, A. , Abourehab, M. A. S. , & Antar, S. A. (2023). Metformin ameliorates doxorubicin–induced cardiotoxicity targeting HMGB1/TLR4/NLRP3 signaling pathway in mice. Life Sciences, 316, 121390. 10.1016/j.lfs.2023.121390 [DOI] [PubMed] [Google Scholar]
  5. Argaud, D. , Roth, H. , Wiernsperger, N. , & Leverve, X. M. (1993). Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. European Journal of Biochemistry, 213(3), 1341–1348. 10.1111/j.1432-1033.1993.tb17886.x [DOI] [PubMed] [Google Scholar]
  6. Arkan, M. C. , Hevener, A. L. , Greten, F. R. , Maeda, S. , Li, Z. W. , Long, J. M. , Wynshaw–Boris, A. , Poli, G. , Olefsky, J. , & Karin, M. (2005). IKK–beta links inflammation to obesity–induced insulin resistance. Nature Medicine, 11(2), 191–198. 10.1038/nm1185 [DOI] [PubMed] [Google Scholar]
  7. Ben Sahra, I. , Regazzetti, C. , Robert, G. , Laurent, K. , Le Marchand–Brustel, Y. , Auberger, P. , Tanti, J. F. , Giorgetti–Peraldi, S. , & Bost, F. (2011). Metformin, independent of AMPK, induces mTOR inhibition and cell–cycle arrest through REDD1. Cancer Research, 71(13), 4366–4372. 10.1158/0008-5472.CAN-10-1769 [DOI] [PubMed] [Google Scholar]
  8. Berraondo, P. , Sanmamed, M. F. , Ochoa, M. C. , Etxeberria, I. , Aznar, M. A. , Perez–Gracia, J. L. , Rodriguez–Ruiz, M. E. , Ponz–Sarvise, M. , Castanon, E. , & Melero, I. (2019). Cytokines in clinical cancer immunotherapy. British Journal of Cancer, 120(1), 6–15. 10.1038/s41416-018-0328-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bharath, L. P. , Agrawal, M. , McCambridge, G. , Nicholas, D. A. , Hasturk, H. , Liu, J. , Jiang, K. , Liu, R. , Guo, Z. , Deeney, J. , Apovian, C. M. , Snyder–Cappione, J. , Hawk, G. S. , Fleeman, R. M. , Pihl, R. M. F. , Thompson, K. , Belkina, A. C. , Cui, L. , Proctor, E. A. , … Nikolajczyk, B. S. (2020). Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging–associated inflammation. Cell Metabolism, 32(1), 44–55 e46. 10.1016/j.cmet.2020.04.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Biological, N. (2014). Toll–like Receptors Novus Biologicals & Innate Immunity: The Story Tolll'd Updated Edition 2014. Novus Biologicals, LLC. [Google Scholar]
  11. Bolourani, S. , Brenner, M. , & Wang, P. (2021). The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. Journal of Molecular Medicine, 99(10), 1373–1384. 10.1007/s00109-021-02113-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bonaldi, T. , Talamo, F. , Scaffidi, P. , Ferrera, D. , Porto, A. , Bachi, A. , Rubartelli, A. , Agresti, A. , & Bianchi, M. E. (2003). Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal, 22(20), 5551–5560. 10.1093/emboj/cdg516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Borst, S. E. (2004). The role of TNF–alpha in insulin resistance. Endocrine, 23(2–3), 177–182. 10.1385/ENDO:23:2-3:177 [DOI] [PubMed] [Google Scholar]
  14. Caldwell, A. B. , Cheng, Z. , Vargas, J. D. , Birnbaum, H. A. , & Hoffmann, A. (2014). Network dynamics determine the autocrine and paracrine signaling functions of TNF. Genes & Development, 28(19), 2120–2133. 10.1101/gad.244749.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cansby, E. , Nerstedt, A. , Amrutkar, M. , Duran, E. N. , Smith, U. , & Mahlapuu, M. (2014). Partial hepatic resistance to IL–6–induced inflammation develops in type 2 diabetic mice, while the anti–inflammatory effect of AMPK is maintained. Molecular and Cellular Endocrinology, 393(1–2), 143–151. 10.1016/j.mce.2014.06.014 [DOI] [PubMed] [Google Scholar]
  16. Chen, J. , Ou, Y. , Li, Y. , Hu, S. , Shao, L. W. , & Liu, Y. (2017). Metformin extends C. elegans lifespan through lysosomal pathway. Elife, 6, e31268. 10.7554/eLife.31268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chen, Z. , & Zhong, C. (2014). Oxidative stress in Alzheimer's disease. Neuroscience Bulletin, 30(2), 271–281. 10.1007/s12264-013-1423-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cheng, K. , & Hao, M. (2016). Metformin inhibits TGF–beta1–induced epithelial–to–mesenchymal transition via PKM2 relative–mTOR/p70s6k signaling pathway in cervical carcinoma cells. International Journal of Molecular Sciences, 17(12), 2000. 10.3390/ijms17122000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chiang, C. F. , Chao, T. T. , Su, Y. F. , Hsu, C. C. , Chien, C. Y. , Chiu, K. C. , Shiah, S. G. , Lee, C. H. , Liu, S. Y. , & Shieh, Y. S. (2017). Metformin–treated cancer cells modulate macrophage polarization through AMPK–NF–kappaB signaling. Oncotarget, 8(13), 20706–20718. 10.18632/oncotarget.14982 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Christensen, M. , Jensen, J. B. , Jakobsen, S. , Jessen, N. , Frokiaer, J. , Kemp, B. E. , Marciszyn, A. L. , Li, H. , Pastor–Soler, N. M. , Hallows, K. R. , & Norregaard, R. (2016). Renoprotective effects of metformin are independent of organic cation transporters 1 & 2 and AMP–activated protein kinase in the kidney. Scientific Reports, 6, 35952. 10.1038/srep35952 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chung, J. Y. , Chan, M. K. , Li, J. S. , Chan, A. S. , Tang, P. C. , Leung, K. T. , To, K. F. , Lan, H. Y. , & Tang, P. M. (2021). TGF–beta signaling: From tissue fibrosis to tumor microenvironment. International Journal of Molecular Sciences, 22(14), 7575. 10.3390/ijms22147575 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cree–Green, M. , Bergman, B. C. , Cengiz, E. , Fox, L. A. , Hannon, T. S. , Miller, K. , Nathan, B. , Pyle, L. , Kahn, D. , Tansey, M. , Tichy, E. , Tsalikian, E. , Libman, I. , & Nadeau, K. J. (2019). Metformin improves peripheral insulin sensitivity in youth with type 1 diabetes. The Journal of Clinical Endocrinology and Metabolism, 104(8), 3265–3278. 10.1210/jc.2019-00129 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cunha, S. I. , Magnusson, P. U. , Dejana, E. , & Lampugnani, M. G. (2017). Deregulated TGF–beta/BMP signaling in vascular malformations. Circulation Research, 121(8), 981–999. 10.1161/CIRCRESAHA.117.309930 [DOI] [PubMed] [Google Scholar]
  24. Della Corte, C. M. , Ciaramella, V. , Di Mauro, C. , Castellone, M. D. , Papaccio, F. , Fasano, M. , Sasso, F. C. , Martinelli, E. , Troiani, T. , De Vita, F. , Orditura, M. , Bianco, R. , Ciardiello, F. , & Morgillo, F. (2016). Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget, 7(4), 4265–4278. 10.18632/oncotarget.6559 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Deschemin, J. C. , Foretz, M. , Viollet, B. , & Vaulont, S. (2017). AMPK is not required for the effect of metformin on the inhibition of BMP6–induced hepcidin gene expression in hepatocytes. Scientific Reports, 7(1), 12679. 10.1038/s41598-017-12976-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dougan, M. , Ingram, J. R. , Jeong, H. J. , Mosaheb, M. M. , Bruck, P. T. , Ali, L. , Pishesha, N. , Blomberg, O. , Tyler, P. M. , Servos, M. M. , Rashidian, M. , Nguyen, Q. D. , von Andrian, U. H. , Ploegh, H. L. , & Dougan, S. K. (2018). Targeting cytokine therapy to the pancreatic tumor microenvironment using PD–L1–specific VHHs. Cancer Immunology Research, 6(4), 389–401. 10.1158/2326-6066.CIR-17-0495 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dwivedi, D. K. , & Jena, G. B. (2023). Dimethyl fumarate–mediated Nrf2/ARE pathway activation and glibenclamide–mediated NLRP3 inflammasome cascade inhibition alleviate type II diabetes–associated fatty liver in rats by mitigating oxidative stress and inflammation. Journal of Biochemical and Molecular Toxicology, e23357. 10.1002/jbt.23357 [DOI] [PubMed] [Google Scholar]
  28. Eskandari, E. , & Eaves, C. J. (2022). Paradoxical roles of caspase–3 in regulating cell survival, proliferation, and tumorigenesis. Journal of Cell Biology, 221(6), e202201159. 10.1083/jcb.202201159 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fajgenbaum, D. C. , & June, C. H. (2020). Cytokine storm. The New England Journal of Medicine, 383(23), 2255–2273. 10.1056/NEJMra2026131 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Flory, J. , & Lipska, K. (2019). Metformin in 2019. JAMA, 321(19), 1926–1927. 10.1001/jama.2019.3805 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Foretz, M. , Hebrard, S. , Leclerc, J. , Zarrinpashneh, E. , Soty, M. , Mithieux, G. , Sakamoto, K. , Andreelli, F. , & Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation, 120(7), 2355–2369. 10.1172/JCI40671 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Forrester, J. V. , Kuffova, L. , & Delibegovic, M. (2020). The role of inflammation in diabetic retinopathy. Frontiers in Immunology, 11, 583687. 10.3389/fimmu.2020.583687 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Garcia, D. , & Shaw, R. J. (2017). AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Molecular Cell, 66(6), 789–800. 10.1016/j.molcel.2017.05.032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Guzik, T. J. , & Touyz, R. M. (2017). Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 70(4), 660–667. 10.1161/HYPERTENSIONAHA.117.07802 [DOI] [PubMed] [Google Scholar]
  35. Hadi, N. R. , Al–Amran, F. G. , & Swadi, A. (2012). Metformin ameliorates methotrexate–induced hepatotoxicity. Journal of Pharmacology and Pharmacotherapeutics, 3(3), 248–253. 10.4103/0976-500X.99426 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hanna, A. , & Frangogiannis, N. G. (2020). Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovascular Drugs and Therapy, 34(6), 849–863. 10.1007/s10557-020-07071-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hayden, M. S. , & Ghosh, S. (2008). Shared principles in NF–kappaB signaling. Cell, 132(3), 344–362. 10.1016/j.cell.2008.01.020 [DOI] [PubMed] [Google Scholar]
  38. Horiuchi, T. , Sakata, N. , Narumi, Y. , Kimura, T. , Hayashi, T. , Nagano, K. , Liu, K. , Nishibori, M. , Tsukita, S. , Yamada, T. , Katagiri, H. , Shirakawa, R. , & Horiuchi, H. (2017). Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. Journal of Biological Chemistry, 292(20), 8436–8446. 10.1074/jbc.M116.769380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Huang, W. S. , Lin, C. T. , Chen, C. N. , Chang, S. F. , Chang, H. I. , & Lee, K. C. (2018). Metformin increases the cytotoxicity of oxaliplatin in human DLD–1 colorectal cancer cells through down–regulating HMGB1 expression. Journal of Cellular Biochemistry, 119(8), 6943–6952. 10.1002/jcb.26898 [DOI] [PubMed] [Google Scholar]
  40. Hunter, C. A. , & Jones, S. A. (2015). IL–6 as a keystone cytokine in health and disease. Nature Immunology, 16(5), 448–457. 10.1038/ni.3153 [DOI] [PubMed] [Google Scholar]
  41. Isoda, K. , Young, J. L. , Zirlik, A. , MacFarlane, L. A. , Tsuboi, N. , Gerdes, N. , Schonbeck, U. , & Libby, P. (2006). Metformin inhibits proinflammatory responses and nuclear factor–kappaB in human vascular wall cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(3), 611–617. 10.1161/01.ATV.0000201938.78044.75 [DOI] [PubMed] [Google Scholar]
  42. Jang, D. I. , Lee, A. H. , Shin, H. Y. , Song, H. R. , Park, J. H. , Kang, T. B. , Lee, S. R. , & Yang, S. H. (2021). The role of tumor necrosis factor alpha (TNF–alpha) in autoimmune disease and current TNF–alpha inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 2719. 10.3390/ijms22052719 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Jang, J. H. , Sung, E. G. , Song, I. H. , Lee, T. J. , & Kim, J. Y. (2020). Metformin induces caspase–dependent and caspase–independent apoptosis in human bladder cancer T24 cells. Anticancer Drugs, 31(7), 655–662. 10.1097/CAD.0000000000000966 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Jha, A. K. , Gairola, S. , Kundu, S. , Doye, P. , Syed, A. M. , Ram, C. , Murty, U. S. , Naidu, V. G. M. , & Sahu, B. D. (2021). Toll–like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sciences, 271, 119155. 10.1016/j.lfs.2021.119155 [DOI] [PubMed] [Google Scholar]
  45. Jha, J. C. , Dai, A. , Garzarella, J. , Charlton, A. , Urner, S. , Ostergaard, J. A. , Okabe, J. , Holterman, C. E. , Skene, A. , Power, D. A. , Ekinci, E. I. , Coughlan, M. T. , Schmidt, H. , Cooper, M. E. , Touyz, R. M. , Kennedy, C. R. , & Jandeleit–Dahm, K. (2022). Independent of Renox, NOX5 promotes renal inflammation and fibrosis in diabetes by activating ROS–sensitive pathways. Diabetes, 71(6), 1282–1298. 10.2337/db21-1079 [DOI] [PubMed] [Google Scholar]
  46. Joffre, J. , & Hellman, J. (2021). Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxidants & Redox Signaling, 35(15), 1291–1307. 10.1089/ars.2021.0027 [DOI] [PubMed] [Google Scholar]
  47. Kalender, A. , Selvaraj, A. , Kim, S. Y. , Gulati, P. , Brule, S. , Viollet, B. , Kemp, B. E. , Bardeesy, N. , Dennis, P. , Schlager, J. J. , Marette, A. , Kozma, S. C. , & Thomas, G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase–dependent manner. Cell Metabolism, 11(5), 390–401. 10.1016/j.cmet.2010.03.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kang, R. , Chen, R. , Zhang, Q. , Hou, W. , Wu, S. , Cao, L. , Huang, J. , Yu, Y. , Fan, X. G. , Yan, Z. , Sun, X. , Wang, H. , Wang, Q. , Tsung, A. , Billiar, T. R. , Zeh, H. J., 3rd , Lotze, M. T. , & Tang, D. (2014). HMGB1 in health and disease. Molecular Aspects of Medicine, 40, 1–116. 10.1016/j.mam.2014.05.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Karam, B. S. , Chavez–Moreno, A. , Koh, W. , Akar, J. G. , & Akar, F. G. (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 16(1), 120. 10.1186/s12933-017-0604-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kenny, H. C. , & Abel, E. D. (2019). Heart failure in type 2 diabetes mellitus. Circulation Research, 124(1), 121–141. 10.1161/CIRCRESAHA.118.311371 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kim, J. , Kwak, H. J. , Cha, J. Y. , Jeong, Y. S. , Rhee, S. D. , Kim, K. R. , & Cheon, H. G. (2014). Metformin suppresses lipopolysaccharide (LPS)–induced inflammatory response in murine macrophages via activating transcription factor–3 (ATF–3) induction. Journal of Biological Chemistry, 289(33), 23246–23255. 10.1074/jbc.M114.577908 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Koroglu–Aydin, P. , Bayrak, B. B. , Bugan, I. , Karabulut–Bulan, O. , & Yanardag, R. (2021). Histological and biochemical investigation of the renoprotective effects of metformin in diabetic and prostate cancer model. Toxicology Mechanisms and Methods, 31(7), 489–500. 10.1080/15376516.2021.1919810 [DOI] [PubMed] [Google Scholar]
  53. Lawrence, T. (2009). The nuclear factor NF–kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651. 10.1101/cshperspect.a001651 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Li, Y. , Liu, Y. , Liu, S. , Gao, M. , Wang, W. , Chen, K. , Huang, L. , & Liu, Y. (2023). Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy, 8(1), 152. 10.1038/s41392-023-01400-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Lim, H. , Lee, S. H. , Lee, H. T. , Lee, J. U. , Son, J. Y. , Shin, W. , & Heo, Y. S. (2018). Structural biology of the TNFalpha antagonists used in the treatment of rheumatoid arthritis. International Journal of Molecular Sciences, 19(3), 768. 10.3390/ijms19030768 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lippitz, B. E. (2013). Cytokine patterns in patients with cancer: A systematic review. The Lancet Oncology, 14(6), e218–e228. 10.1016/S1470-2045(12)70582-X [DOI] [PubMed] [Google Scholar]
  57. Luo, F. , Guo, Y. , Ruan, G. Y. , Long, J. K. , Zheng, X. L. , Xia, Q. , Zhao, S. P. , Peng, D. Q. , Fang, Z. F. , & Li, X. P. (2017). Combined use of metformin and atorvastatin attenuates atherosclerosis in rabbits fed a high–cholesterol diet. Scientific Reports, 7(1), 2169. 10.1038/s41598-017-02080-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Malin, S. K. , Gerber, R. , Chipkin, S. R. , & Braun, B. (2012). Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care, 35(1), 131–136. 10.2337/dc11-0925 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Moller, D. E. (2000). Potential role of TNF–alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends in Endocrinology & Metabolism, 11(6), 212–217. 10.1016/s1043-2760(00)00272-1 [DOI] [PubMed] [Google Scholar]
  60. Moonira, T. , Chachra, S. S. , Ford, B. E. , Marin, S. , Alshawi, A. , Adam–Primus, N. S. , Arden, C. , Al–Oanzi, Z. H. , Foretz, M. , Viollet, B. , Cascante, M. , & Agius, L. (2020). Metformin lowers glucose 6–phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation. Journal of Biological Chemistry, 295(10), 3330–3346. 10.1074/jbc.RA120.012533 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Morikawa, M. , Derynck, R. , & Miyazono, K. (2016). TGF–beta and the TGF–beta family: Context–dependent roles in cell and tissue physiology. Cold Spring Harbor Perspectives in Biology, 8(5), a021873. 10.1101/cshperspect.a021873 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Mxinwa, V. , Nkambule, B. B. , Nyambuya, T. M. , & Dludla, P. V. (2022). Expression of caspase–3 in circulating innate lymphoid cells subtypes is altered by treatment with metformin and Fluvastatin in high–fat diet fed C57BL/6 mice. Cells, 11(9), 1430. 10.3390/cells11091430 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Mzyk, P. , Hernandez, H. , Le, T. , Ramirez, J. R. , & McDowell, C. M. (2022). Toll–like receptor 4 signaling in the trabecular meshwork. Frontiers in Cell and Developmental Biology, 10, 936115. 10.3389/fcell.2022.936115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Newton, K. , Dixit, V. M. , & Kayagaki, N. (2021). Dying cells fan the flames of inflammation. Science, 374(6571), 1076–1080. 10.1126/science.abi5934 [DOI] [PubMed] [Google Scholar]
  65. Noack, M. , & Miossec, P. (2017). Selected cytokine pathways in rheumatoid arthritis. Seminars in Immunopathology, 39(4), 365–383. 10.1007/s00281-017-0619-z [DOI] [PubMed] [Google Scholar]
  66. Papaconstantinou, J. (2019). The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells, 8(11), 1383. 10.3390/cells8111383 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Paradies, G. , Paradies, V. , Ruggiero, F. M. , & Petrosillo, G. (2014). Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World Journal of Gastroenterology, 20(39), 14205–14218. 10.3748/wjg.v20.i39.14205 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Poon, M. K. , Chiu, P. Y. , Mak, D. H. , & Ko, K. M. (2003). Metformin protects against carbon tetrachloride hepatotoxicity in mice. Journal of Pharmacological Sciences, 93(4), 501–504. 10.1254/jphs.93.501 [DOI] [PubMed] [Google Scholar]
  69. Propper, D. J. , & Balkwill, F. R. (2022). Harnessing cytokines and chemokines for cancer therapy. Nature Reviews Clinical Oncology, 19(4), 237–253. 10.1038/s41571-021-00588-9 [DOI] [PubMed] [Google Scholar]
  70. Rena, G. , Hardie, D. G. , & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577–1585. 10.1007/s00125-017-4342-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Rohm, T. V. , Meier, D. T. , Olefsky, J. M. , & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. 10.1016/j.immuni.2021.12.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Rosidi, B. , Priyatno, D. , Putra, T. P. , & Yusuf, I. (2023). Metformin induces a caspase 3–unrelated apoptosis in human colorectal cancer cell lines HCT116 and SW620. Cancer Management and Research, 15, 475–485. 10.2147/CMAR.S385278 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Rubartelli, A. , & Lotze, M. T. (2007). Inside, outside, upside down: Damage–associated molecular–pattern molecules (DAMPs) and redox. Trends in Immunology, 28(10), 429–436. 10.1016/j.it.2007.08.004 [DOI] [PubMed] [Google Scholar]
  74. Rusai, K. , Sollinger, D. , Baumann, M. , Wagner, B. , Strobl, M. , Schmaderer, C. , Roos, M. , Kirschning, C. , Heemann, U. , & Lutz, J. (2010). Toll–like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatric Nephrology, 25(5), 853–860. 10.1007/s00467-009-1422-4 [DOI] [PubMed] [Google Scholar]
  75. Saha, S. , Buttari, B. , Panieri, E. , Profumo, E. , & Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25(22), 5474. 10.3390/molecules25225474 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Saltiel, A. R. , & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. Journal of Clinical Investigation, 127(1), 1–4. 10.1172/JCI92035 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Seki, E. , De Minicis, S. , Osterreicher, C. H. , Kluwe, J. , Osawa, Y. , Brenner, D. A. , & Schwabe, R. F. (2007). TLR4 enhances TGF–beta signaling and hepatic fibrosis. Nature Medicine, 13(11), 1324–1332. 10.1038/nm1663 [DOI] [PubMed] [Google Scholar]
  78. Senn, J. J. , Klover, P. J. , Nowak, I. A. , & Mooney, R. A. (2002). Interleukin–6 induces cellular insulin resistance in hepatocytes. Diabetes, 51(12), 3391–3399. 10.2337/diabetes.51.12.3391 [DOI] [PubMed] [Google Scholar]
  79. Sharif, S. , Van der Graaf, Y. , Cramer, M. J. , Kapelle, L. J. , de Borst, G. J. , Visseren, F. L. J. , Westerink, J. , & SMART study group . (2021). Low–grade inflammation as a risk factor for cardiovascular events and all–cause mortality in patients with type 2 diabetes. Cardiovascular Diabetology, 20(1), 220. 10.1186/s12933-021-01409-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Shi, H. , Kokoeva, M. V. , Inouye, K. , Tzameli, I. , Yin, H. , & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid–induced insulin resistance. Journal of Clinical Investigation, 116(11), 3015–3025. 10.1172/JCI28898 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Soberanes, S. , Misharin, A. V. , Jairaman, A. , Morales–Nebreda, L. , McQuattie–Pimentel, A. C. , Cho, T. , Hamanaka, R. B. , Meliton, A. Y. , Reyfman, P. A. , Walter, J. M. , Chen, C. I. , Chi, M. , Chiu, S. , Gonzalez–Gonzalez, F. J. , Antalek, M. , Abdala–Valencia, H. , Chiarella, S. E. , Sun, K. A. , Woods, P. S. , … Budinger, G. R. S. (2019). Metformin targets mitochondrial electron transport to reduce air–pollution–induced thrombosis. Cell Metabolism, 29(2), 335–347.e335. 10.1016/j.cmet.2018.09.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Stephenne, X. , Foretz, M. , Taleux, N. , van der Zon, G. C. , Sokal, E. , Hue, L. , Viollet, B. , & Guigas, B. (2011). Metformin activates AMP–activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia, 54(12), 3101–3110. 10.1007/s00125-011-2311-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Sumien, N. , Cunningham, J. T. , Davis, D. L. , Engelland, R. , Fadeyibi, O. , Farmer, G. E. , Mabry, S. , Mensah–Kane, P. , Trinh, O. T. P. , Vann, P. H. , Wilson, E. N. , & Cunningham, R. L. (2021). Neurodegenerative disease: Roles for sex, hormones, and oxidative stress. Endocrinology, 162(11), bqab185. 10.1210/endocr/bqab185 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Tak, P. P. , & Firestein, G. S. (2001). NF–kappaB: A key role in inflammatory diseases. Journal of Clinical Investigation, 107(1), 7–11. 10.1172/JCI11830 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Takeuchi, O. , & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. 10.1016/j.cell.2010.01.022 [DOI] [PubMed] [Google Scholar]
  86. Travis, M. A. , & Sheppard, D. (2014). TGF–beta activation and function in immunity. Annual Review of Immunology, 32, 51–82. 10.1146/annurev-immunol-032713-120257 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Trefts, E. , & Shaw, R. J. (2021). AMPK: Restoring metabolic homeostasis over space and time. Molecular Cell, 81(18), 3677–3690. 10.1016/j.molcel.2021.08.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Tsang, Y. L. , Kao, C. L. , Lin, S. A. , & Li, C. J. (2022). Mitochondrial dysfunction and oxidative stress in aging and disease. Biomedicines, 10(11), 2872. 10.3390/biomedicines10112872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Tsoyi, K. , Jang, H. J. , Nizamutdinova, I. T. , Kim, Y. M. , Lee, Y. S. , Kim, H. J. , Seo, H. G. , Lee, J. H. , & Chang, K. C. (2011). Metformin inhibits HMGB1 release in LPS–treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. British Journal of Pharmacology, 162(7), 1498–1508. 10.1111/j.1476-5381.2010.01126.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. UKPDS . (1998). Effect of intensive blood–glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 352(9131), 854–865. [PubMed] [Google Scholar]
  91. Van Opdenbosch, N. , & Lamkanfi, M. (2019). Caspases in cell death, inflammation, and disease. Immunity, 50(6), 1352–1364. 10.1016/j.immuni.2019.05.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Vandanmagsar, B. , Youm, Y. H. , Ravussin, A. , Galgani, J. E. , Stadler, K. , Mynatt, R. L. , Ravussin, E. , Stephens, J. M. , & Dixit, V. D. (2011). The NLRP3 inflammasome instigates obesity–induced inflammation and insulin resistance. Nature Medicine, 17(2), 179–188. 10.1038/nm.2279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Venereau, E. , Ceriotti, C. , & Bianchi, M. E. (2015). DAMPs from cell death to new life. Frontiers in Immunology, 6, 422. 10.3389/fimmu.2015.00422 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Venereau, E. , De Leo, F. , Mezzapelle, R. , Careccia, G. , Musco, G. , & Bianchi, M. E. (2016). HMGB1 as biomarker and drug target. Pharmacological Research, 111, 534–544. 10.1016/j.phrs.2016.06.031 [DOI] [PubMed] [Google Scholar]
  95. Volarevic, V. , Misirkic, M. , Vucicevic, L. , Paunovic, V. , Simovic Markovic, B. , Stojanovic, M. , Milovanovic, M. , Jakovljevic, V. , Micic, D. , Arsenijevic, N. , Trajkovic, V. , & Lukic, M. L. (2015). Metformin aggravates immune–mediated liver injury in mice. Archives of Toxicology, 89(3), 437–450. 10.1007/s00204-014-1263-1 [DOI] [PubMed] [Google Scholar]
  96. Wang, Y. , Luo, W. , Han, J. , Khan, Z. A. , Fang, Q. , Jin, Y. , Chen, X. , Zhang, Y. , Wang, M. , Qian, J. , Huang, W. , Lum, H. , Wu, G. , & Liang, G. (2020). MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nature Communications, 11(1), 2148. 10.1038/s41467-020-15978-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Wheaton, W. W. , Weinberg, S. E. , Hamanaka, R. B. , Soberanes, S. , Sullivan, L. B. , Anso, E. , Glasauer, A. , Dufour, E. , Mutlu, G. M. , Budigner, G. S. , & Chandel, N. S. (2014). Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 3, e02242. 10.7554/eLife.02242 [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Winiarska, A. , Knysak, M. , Nabrdalik, K. , Gumprecht, J. , & Stompor, T. (2021). Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP–1 Receptor Agonists. International Journal of Molecular Sciences, 22(19), 10822. 10.3390/ijms221910822 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Xiong, W. , Sun, K. Y. , Zhu, Y. , Zhang, X. , Zhou, Y. H. , & Zou, X. (2021). Metformin alleviates inflammation through suppressing FASN–dependent palmitoylation of Akt. Cell Death & Disease, 12(10), 934. 10.1038/s41419-021-04235-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Yuan, H. , Li, L. , Zheng, W. , Wan, J. , Ge, P. , Li, H. , & Zhang, L. (2012). Antidiabetic drug metformin alleviates endotoxin–induced fulminant liver injury in mice. International Immunopharmacology, 12(4), 682–688. 10.1016/j.intimp.2012.01.015 [DOI] [PubMed] [Google Scholar]
  101. Zhang, H. Q. , Yang, S. W. , Fu, Y. C. , Chen, M. C. , Yang, C. H. , Yang, M. H. , Liu, X. D. , He, Q. N. , Jiang, H. , & Zhao, M. Y. (2022). Cytokine storm and targeted therapy in hemophagocytic lymphohistiocytosis. Immunologic Research, 70(5), 566–577. 10.1007/s12026-022-09285-w [DOI] [PubMed] [Google Scholar]
  102. Zhang, Y. , Wang, Y. , Bao, C. , Xu, Y. , Shen, H. , Chen, J. , Yan, J. , & Chen, Y. (2012). Metformin interacts with AMPK through binding to gamma subunit. Molecular and Cellular Biochemistry, 368(1–2), 69–76. 10.1007/s11010-012-1344-5 [DOI] [PubMed] [Google Scholar]
  103. Zheng, Z. , Bian, Y. , Zhang, Y. , Ren, G. , & Li, G. (2020). Metformin activates AMPK/SIRT1/NF–kappaB pathway and induces mitochondrial dysfunction to drive caspase 3/GSDME–mediated cancer cell pyroptosis. Cell Cycle, 19(10), 1089–1104. 10.1080/15384101.2020.1743911 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Zhou, G. , Myers, R. , Li, Y. , Chen, Y. , Shen, X. , Fenyk–Melody, J. , Wu, M. , Ventre, J. , Doebber, T. , Fujii, N. , Musi, N. , Hirshman, M. F. , Goodyear, L. J. , & Moller, D. E. (2001). Role of AMP–activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108(8), 1167–1174. 10.1172/JCI13505 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genes to Cells are provided here courtesy of Wiley

RESOURCES