Abstract
Crystal growth in native collagen gels has been used to determine the role of extracellular matrix macromolecules in biological calcification phenomena. In this system, type I collagen gels containing sodium phosphate and buffered at pH 7.4 are overlayed with a solution containing CaCl2. Crystals form in the collagen gel adjacent to the gel-solution interface. Conditions were determined which permit the growth of crystals of hydroxyapatite [Ca10(PO4)6(OH)2]. At a Ca/P molar ratio of 2:1, the minimum concentrations of calcium and phosphate necessary for precipitation of hydroxyapatite are 10 mM and 5 mM, respectively. Under these conditions, precipitation is initiated at 18-24h, and is maximal between 24h and 6 days. Addition of high concentrations of chondroitin 4-sulphate inhibits the formation of hydroxyapatite in collagen gels; initiation of precipitation is delayed, and the final (equilibrium) amount of precipitation is decreased. Inhibition of hydroxyapatite formation requires concentrations of chondroitin sulphate higher than those required to inhibit calcium pyrophosphate crystal formation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumenthal N. C., Posner A. S., Silverman L. D., Rosenberg L. C. Effect of proteoglycans on in vitro hydroxyapatite formation. Calcif Tissue Int. 1979 Mar 13;27(1):75–82. doi: 10.1007/BF02441164. [DOI] [PubMed] [Google Scholar]
- Buckwalter J. A. Proteoglycan structure in calcifying cartilage. Clin Orthop Relat Res. 1983 Jan-Feb;(172):207–232. [PubMed] [Google Scholar]
- Chen C. C., Boskey A. L., Rosenberg L. C. The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int. 1984 May;36(3):285–290. doi: 10.1007/BF02405332. [DOI] [PubMed] [Google Scholar]
- Cuervo L. A., Pita J. C., Howell D. S. Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calcif Tissue Res. 1973;13(1):1–10. doi: 10.1007/BF02015390. [DOI] [PubMed] [Google Scholar]
- Hascall V. C., Kimura J. H. Proteoglycans: isolation and characterization. Methods Enzymol. 1982;82(Pt A):769–800. doi: 10.1016/0076-6879(82)82102-2. [DOI] [PubMed] [Google Scholar]
- Pokrić B., Pucar Z. Precipitation of calcium phosphates under conditions of double diffusion in collagen and gels of gelatin and agar. Calcif Tissue Int. 1979 Apr 17;27(2):171–176. doi: 10.1007/BF02441181. [DOI] [PubMed] [Google Scholar]
- Poole A. R., Pidoux I., Rosenberg L. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol. 1982 Feb;92(2):249–260. doi: 10.1083/jcb.92.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pritzker K. P., Cheng P. T., Adams M. E., Nyburg S. C. Calcium pyrophosphate dihydrate crystal formation in model hydrogels. J Rheumatol. 1978 Winter;5(4):469–473. [PubMed] [Google Scholar]
- Termine J. D., Posner A. S. Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch Biochem Biophys. 1970 Oct;140(2):307–317. doi: 10.1016/0003-9861(70)90071-8. [DOI] [PubMed] [Google Scholar]
- Thyberg J. Electron microscopic studies on the initial phases of calcification in guinea pig epiphyseal cartilage. J Ultrastruct Res. 1974 Feb;46(2):206–218. doi: 10.1016/s0022-5320(74)80056-0. [DOI] [PubMed] [Google Scholar]
- de Jong A. S., Hak T. J., van Duijn P. The dynamics of calcium phosphate precipitation studied with a new polyacrylamide steady state matrix-model: influence of pyrophosphate collagen and chondroitin sulfate. Connect Tissue Res. 1980;7(2):73–79. doi: 10.3109/03008208009152291. [DOI] [PubMed] [Google Scholar]