Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 15;229(2):429–439. doi: 10.1042/bj2290429

Characterization of human interleukin 2 derived from Escherichia coli.

S M Liang, B Allet, K Rose, M Hirschi, C M Liang, D R Thatcher
PMCID: PMC1145075  PMID: 3899106

Abstract

Interleukin 2 isolated from Escherichia coli cells expressing the human interleukin gene has been characterized. The observed properties of the protein have been compared with those properties which can be deduced from the DNA sequence alone and the published properties of natural human interleukin 2. The purified E. coli-derived interleukin 2 is a monomeric protein of Mr 15 000 with a sedimentation velocity of 1.86S. The amino acid composition of the protein and isoelectric point (7.7) are consistent with that part of the translated DNA sequence of the gene corresponding to the mature protein. A single disulphide bridge was identified between Cys-58 and Cys-105. C.d. suggested that interleukin 2 is predominantly alpha-helical in secondary structure. The E. coli-derived protein differed from natural interleukin 2 in the presence of N-terminal methionine and also in the absence of a carbohydrate moiety. Removal of the coding region for the first three amino acids of the natural interleukin 2 protein sequence (Ala-Pro-Thr) by site-specific mutagenesis resulted in a protein with N-terminal serine. The possibility that the specificity of the E. coli ribosomal methionine aminopeptidase may not recognize the sequence NH2-Met-Xaa-Pro is discussed (where Xaa is any amino acid residue).

Full text

PDF
433

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K. Analytical gel chromatography of proteins. Adv Protein Chem. 1970;24:343–446. doi: 10.1016/s0065-3233(08)60245-4. [DOI] [PubMed] [Google Scholar]
  2. Adams J. M. On the release of the formyl group from nascent protein. J Mol Biol. 1968 May 14;33(3):571–589. doi: 10.1016/0022-2836(68)90307-0. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  4. Clark S. C., Arya S. K., Wong-Staal F., Matsumoto-Kobayashi M., Kay R. M., Kaufman R. J., Brown E. L., Shoemaker C., Copeland T., Oroszlan S. Human T-cell growth factor: partial amino acid sequence, cDNA cloning, and organization and expression in normal and leukemic cells. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2543–2547. doi: 10.1073/pnas.81.8.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Degrave W., Tavernier J., Duerinck F., Plaetinck G., Devos R., Fiers W. Cloning and structure of the human interleukin 2 chromosomal gene. EMBO J. 1983;2(12):2349–2353. doi: 10.1002/j.1460-2075.1983.tb01745.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devos R., Plaetinck G., Cheroutre H., Simons G., Degrave W., Tavernier J., Remaut E., Fiers W. Molecular cloning of human interleukin 2 cDNA and its expression in E. coli. Nucleic Acids Res. 1983 Jul 11;11(13):4307–4323. doi: 10.1093/nar/11.13.4307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farrar J. J., Benjamin W. R., Hilfiker M. L., Howard M., Farrar W. L., Fuller-Farrar J. The biochemistry, biology, and role of interleukin 2 in the induction of cytotoxic T cell and antibody-forming B cell responses. Immunol Rev. 1982;63:129–166. doi: 10.1111/j.1600-065x.1982.tb00414.x. [DOI] [PubMed] [Google Scholar]
  8. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  9. Godard A., Naulet J., Peyrat M. A., Vie H., Moreau J. F., Bignon J. D., Soulillou J. P. Preparative two-step purification of human IL-2 by HPLC and hydrophobic affinity chromatography. J Immunol Methods. 1984 May 25;70(2):233–244. doi: 10.1016/0022-1759(84)90188-1. [DOI] [PubMed] [Google Scholar]
  10. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inaba K., Granelli-Piperno A., Steinman R. M. Dendritic cells induce T lymphocytes to release B cell-stimulating factors by an interleukin 2-dependent mechanism. J Exp Med. 1983 Dec 1;158(6):2040–2057. doi: 10.1084/jem.158.6.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kniep E. M., Kniep B., Grote W., Conradt H. S., Monner D. A., Mühlradt P. F. Purification of the T lymphocyte growth factor interleukin-2 from culture media of human peripheral blood leukocytes (buffy coats). Eur J Biochem. 1984 Aug 15;143(1):199–203. doi: 10.1111/j.1432-1033.1984.tb08359.x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Mencke A. J., Wold F. Neoglycoproteins. Preparation and in vivo clearance of serum albumin derivatives containing ovalbumin oligosaccharides. J Biol Chem. 1982 Dec 25;257(24):14799–14805. [PubMed] [Google Scholar]
  15. Morgan D. A., Ruscetti F. W., Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976 Sep 10;193(4257):1007–1008. doi: 10.1126/science.181845. [DOI] [PubMed] [Google Scholar]
  16. Olson K. C., Fenno J., Lin N., Harkins R. N., Snider C., Kohr W. H., Ross M. J., Fodge D., Prender G., Stebbing N. Purified human growth hormone from E. coli is biologically active. Nature. 1981 Oct 1;293(5831):408–411. doi: 10.1038/293408a0. [DOI] [PubMed] [Google Scholar]
  17. Ortaldo J. R., Mason A. T., Gerard J. P., Henderson L. E., Farrar W., Hopkins R. F., 3rd, Herberman R. B., Rabin H. Effects of natural and recombinant IL 2 on regulation of IFN gamma production and natural killer activity: lack of involvement of the Tac antigen for these immunoregulatory effects. J Immunol. 1984 Aug;133(2):779–783. [PubMed] [Google Scholar]
  18. ROE J. H. The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem. 1955 Jan;212(1):335–343. [PubMed] [Google Scholar]
  19. Robb R. J. Human T-cell growth factor: purification biochemical characterization, and interaction with a cellular receptor. Immunobiology. 1982 Mar;161(1-2):21–50. doi: 10.1016/S0171-2985(82)80018-1. [DOI] [PubMed] [Google Scholar]
  20. Robb R. J., Kutny R. M., Chowdhry V. Purification and partial sequence analysis of human T-cell growth factor. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5990–5994. doi: 10.1073/pnas.80.19.5990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robb R. J., Kutny R. M., Panico M., Morris H., DeGrado W. F., Chowdhry V. Posttranslational modification of human T-cell growth factor. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1049–1055. doi: 10.1016/s0006-291x(83)80248-4. [DOI] [PubMed] [Google Scholar]
  22. Rose K., Simona M. G., Offord R. E. Amino acid sequence determination by g.l.c.--mass spectrometry of permethylated peptides. Optimization of the formation of chemical derivatives at the 2-10 nmol level. Biochem J. 1983 Nov 1;215(2):261–272. doi: 10.1042/bj2150261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rose K., Simona M. G., Offord R. E., Prior C. P., Otto B., Thatcher D. R. A new mass-spectrometric C-terminal sequencing technique finds a similarity between gamma-interferon and alpha 2-interferon and identifies a proteolytically clipped gamma-interferon that retains full antiviral activity. Biochem J. 1983 Nov 1;215(2):273–277. doi: 10.1042/bj2150273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stern A. S., Pan Y. C., Urdal D. L., Mochizuki D. Y., DeChiara S., Blacher R., Wideman J., Gillis S. Purification to homogeneity and partial characterization of interleukin 2 from a human T-cell leukemia. Proc Natl Acad Sci U S A. 1984 Feb;81(3):871–875. doi: 10.1073/pnas.81.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taniguchi T., Matsui H., Fujita T., Takaoka C., Kashima N., Yoshimoto R., Hamuro J. Structure and expression of a cloned cDNA for human interleukin-2. Nature. 1983 Mar 24;302(5906):305–310. doi: 10.1038/302305a0. [DOI] [PubMed] [Google Scholar]
  26. Wang A., Lu S. D., Mark D. F. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science. 1984 Jun 29;224(4656):1431–1433. doi: 10.1126/science.6427925. [DOI] [PubMed] [Google Scholar]
  27. Welte K., Wang C. Y., Mertelsmann R., Venuta S., Feldman S. P., Moore M. A. Purification of human interleukin 2 to apparent homogeneity and its molecular heterogeneity. J Exp Med. 1982 Aug 1;156(2):454–464. doi: 10.1084/jem.156.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES