Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Feb 15;234(1):75–81. doi: 10.1042/bj2340075

Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria.

G C Brown, M D Brand
PMCID: PMC1146528  PMID: 3010957

Abstract

We have confirmed that the respiration rate of rat liver mitochondria can be substantially inhibited with only a small drop in proton motive force. We have directly measured the passive proton permeability as a function of delta psi by using K+ diffusion potentials and have shown that there is a large increase in proton permeability at high delta psi. This can quantitatively account for the inhibitor titrations of respiration. delta psi and delta pH were shown to have roughly equal effects on the relatively high respiration rate in static head. The permeabilities to K+, tetramethylammonium+ and choline+ were shown to increase greatly at high delta psi, in a similar way to proton permeability, indicating a similar mechanism of entry.

Full text

PDF
80

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardi P., Azzone G. F. Electroneutral H+-K+ exchange in liver mitochondria. Regulation by membrane potential. Biochim Biophys Acta. 1983 Aug 31;724(2):212–223. doi: 10.1016/0005-2728(83)90140-8. [DOI] [PubMed] [Google Scholar]
  2. Brand M. D. The stoicheiometric relationships between electron transport, proton translocation and adenosine triphosphate synthesis and hydrolysis in mitochondria. Biochem Soc Trans. 1977;5(5):1615–1620. doi: 10.1042/bst0051615. [DOI] [PubMed] [Google Scholar]
  3. Brierley G. P., Jurkowitz M., Scott K. M., Merola A. J. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Arch Biochem Biophys. 1971 Dec;147(2):545–556. doi: 10.1016/0003-9861(71)90412-7. [DOI] [PubMed] [Google Scholar]
  4. Brierley G. P. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem. 1976 Jan 31;10(1):41–63. doi: 10.1007/BF01731680. [DOI] [PubMed] [Google Scholar]
  5. Brown G. C., Brand M. D. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):399–405. doi: 10.1042/bj2250399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. J., Cotton N. P., Jackson J. B. The influence of the ionic conductance on the relation between electron transport and proton-motive force in intact cells of Rhodopseudomonas capsulata. Eur J Biochem. 1983 Feb 15;130(3):575–580. doi: 10.1111/j.1432-1033.1983.tb07188.x. [DOI] [PubMed] [Google Scholar]
  7. Costa L. E., Reynafarje B., Lehninger A. L. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow. J Biol Chem. 1984 Apr 25;259(8):4802–4811. [PubMed] [Google Scholar]
  8. Cotton N. P., Clark A. J., Jackson J. B. Changes in membrane ionic conductance, but not changes in slip, can account for the non-linear dependence of the electrochemical proton gradient upon the electron-transport rate in chromatophores. Eur J Biochem. 1984 Jul 2;142(1):193–198. doi: 10.1111/j.1432-1033.1984.tb08269.x. [DOI] [PubMed] [Google Scholar]
  9. Duszyński J., Wojtczak L. The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations. FEBS Lett. 1985 Mar 25;182(2):243–248. doi: 10.1016/0014-5793(85)80307-0. [DOI] [PubMed] [Google Scholar]
  10. Eisenman G., Krasne S., Ciani S. The kinetic and equilibrium components of selective ionic permeability mediated by nactin- and valinomycin-type carriers having systematically varied degrees of methylation. Ann N Y Acad Sci. 1975 Dec 30;264:34–60. doi: 10.1111/j.1749-6632.1975.tb31474.x. [DOI] [PubMed] [Google Scholar]
  11. Gutknecht J. Proton/hydroxide conductance through lipid bilayer membranes. J Membr Biol. 1984;82(1):105–112. doi: 10.1007/BF01870737. [DOI] [PubMed] [Google Scholar]
  12. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansford R. G., Lehninger A. L. The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations. Biochem J. 1972 Feb;126(3):689–700. doi: 10.1042/bj1260689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung D. W., Chávez E., Brierley G. P. Energy-dependent exchange of K+ in heart mitochondria. K+ influx. Arch Biochem Biophys. 1977 Oct;183(2):452–459. doi: 10.1016/0003-9861(77)90380-0. [DOI] [PubMed] [Google Scholar]
  15. Kell D. B., John P., Ferguson S. J. On the current-voltage relationships of energy-transducing membranes: phosphorylating membrane vesicles from Paracoccus denitrificans [proceedings]. Biochem Soc Trans. 1978;6(6):1292–1295. doi: 10.1042/bst0061292. [DOI] [PubMed] [Google Scholar]
  16. Krishnamoorthy G., Hinkle P. C. Non-ohmic proton conductance of mitochondria and liposomes. Biochemistry. 1984 Apr 10;23(8):1640–1645. doi: 10.1021/bi00303a009. [DOI] [PubMed] [Google Scholar]
  17. Nicholls D. G. The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient. Eur J Biochem. 1977 Jul 15;77(2):349–356. doi: 10.1111/j.1432-1033.1977.tb11674.x. [DOI] [PubMed] [Google Scholar]
  18. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  19. O'Shea P. S., Petrone G., Casey R. P., Azzi A. The current-voltage relationships of liposomes and mitochondria. Biochem J. 1984 May 1;219(3):719–726. doi: 10.1042/bj2190719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pietrobon D., Azzone G. F., Walz D. Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'. Eur J Biochem. 1981 Jul;117(2):389–394. doi: 10.1111/j.1432-1033.1981.tb06350.x. [DOI] [PubMed] [Google Scholar]
  21. Pietrobon D., Zoratti M., Azzone G. F. Molecular slipping in redox and ATPase H+ pumps. Biochim Biophys Acta. 1983 May 27;723(2):317–321. doi: 10.1016/0005-2728(83)90131-7. [DOI] [PubMed] [Google Scholar]
  22. Schönfeld M., Neumann J. Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett. 1977 Jan 15;73(1):51–54. doi: 10.1016/0014-5793(77)80013-6. [DOI] [PubMed] [Google Scholar]
  23. Sorgato M. C., Ferguson S. J. Variable proton conductance of submitochondrial particles. Biochemistry. 1979 Dec 11;18(25):5737–5742. doi: 10.1021/bi00592a034. [DOI] [PubMed] [Google Scholar]
  24. Webster K. A., Bronk J. R. Ion movements during energy-linked mitochondrial structural changes. J Bioenerg Biomembr. 1978 Apr;10(1-2):23–44. doi: 10.1007/BF00743225. [DOI] [PubMed] [Google Scholar]
  25. Westerhoff H. V., Melandri B. A., Venturoli G., Azzone G. F., Kell D. B. A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. Biochim Biophys Acta. 1984 Dec 17;768(3-4):257–292. doi: 10.1016/0304-4173(84)90019-3. [DOI] [PubMed] [Google Scholar]
  26. el-Mashak E. M., Tsong T. Y. Ion selectivity of temperature-induced and electric field induced pores in dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1985 Jun 4;24(12):2884–2888. doi: 10.1021/bi00333a010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES