Abstract
The effects of hormones on the cytochrome spectra of isolated hepatocytes were recorded under conditions of active gluconeogenesis from L-lactate. Glucagon, phenylephrine, vasopressin and valinomycin, at concentrations that caused stimulation of gluconeogenesis, increased the reduction of the components of the cytochrome bc1 complex, just as has been observed in liver mitochondria isolated from glucagon-treated rats [Halestrap (1982) Biochem. J. 204, 37-47]. The effects of glucagon and phenylephrine were additive. The time courses of the increased reduction of cytochrome c/c1 and NAD(P)H/NAD(P)+ caused by hormones, valinomycin, A23187 and ethanol were measured by dual-beam spectrophotometry and fluorescence respectively. Ethanol (14 mM) produced a substantial rise in NAD(P)H fluorescence, beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios, no change in cytochrome c/c1 reduction, a 10% decrease in O2 consumption and a 60% decrease in gluconeogenesis. Glucagon, phenylephrine and vasopressin caused a substantial and transient rise in NAD(P)H fluorescence, but a sustained increase in cytochrome c/c1 reduction and the rates of O2 consumption and gluconeogenesis. The transience of the fluorescence response was greater in the absence of Ca2+, when the cytochrome c/c1 response also became transient. The fluorescence response was smaller and less transient, but the cytochrome c/c1 response was greater, in the presence of fatty acids. Both responses were greatly decreased by the presence of 1 mM-pent-4-enoate. Valinomycin (2.5 nM) caused a decrease in NAD(P)H fluorescence coincident with an increase in cytochrome c/c1 reduction and the rate of gluconeogenesis and O2 consumption. A23187 (7.5 mM) caused increases in both NAD(P)H fluorescence and cytochrome c/c1 reduction. The effects of hormones and valinomycin on the time courses of NAD(P)H fluorescence, cytochrome c/c1 reduction and light-scattering by hepatocytes were compared with those of 0.5 microM-Ca2+ or 1 nM-valinomycin on the same parameters of isolated liver mitochondria. It is concluded that hormones increase respiration by hepatocytes in a biphasic manner. An initial Ca2+-dependent activation of mitochondrial dehydrogenases rapidly increases the mitochondrial [NADH], which is followed by a volume-mediated stimulation of fatty acid oxidation and electron flow between NADH and cytochrome c. 10. Amytal (0.5 mM) was able to reverse the effects of hormones on the reduction of cytochromes c/c1 and the rates of gluconeogenesis and O2 consumption without significantly lowering tissue [ATP].(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aprille J. R., Nosek M. T., Brennan W. A., Jr Adenine nucleotide content of liver mitochondria increases after glucagon treatment of rats or isolated hepatocytes. Biochem Biophys Res Commun. 1982 Sep 30;108(2):834–839. doi: 10.1016/0006-291x(82)90905-6. [DOI] [PubMed] [Google Scholar]
 - Armston A. E., Halestrap A. P. Glucagon treatment of rats inhibits the accumulation of lysophospholipids by liver mitochondria during preparation and subsequent incubation. Biosci Rep. 1984 Nov;4(11):903–908. doi: 10.1007/BF01116887. [DOI] [PubMed] [Google Scholar]
 - Armston A. E., Halestrap A. P., Scott R. D. The nature of the changes in liver mitochondrial function induced by glucagon treatment of rats. The effects of intramitochondrial volume, aging and benzyl alcohol. Biochim Biophys Acta. 1982 Sep 15;681(3):429–439. doi: 10.1016/0005-2728(82)90185-2. [DOI] [PubMed] [Google Scholar]
 - Balaban R. S., Blum J. J. Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. Am J Physiol. 1982 Mar;242(3):C172–C177. doi: 10.1152/ajpcell.1982.242.3.C172. [DOI] [PubMed] [Google Scholar]
 - Berry M. N., Clark D. G., Grivell A. R., Wallace P. G. The calorigenic nature of hepatic ketogenesis: an explanation for the stimulation of respiration induced by fatty acid substrates. Eur J Biochem. 1983 Mar 1;131(1):205–214. doi: 10.1111/j.1432-1033.1983.tb07251.x. [DOI] [PubMed] [Google Scholar]
 - Berry M. N., Gregory R. B., Grivell A. R., Wallace P. G. Compartmentation of fatty acid oxidation in liver cells. Eur J Biochem. 1983 Mar 1;131(1):215–222. doi: 10.1111/j.1432-1033.1983.tb07252.x. [DOI] [PubMed] [Google Scholar]
 - Berthon B., Poggioli J., Capiod T., Claret M. Effect of the alpha-agonist noradrenaline on total and 45Ca2+ movements in mitochondria of rat liver cells. Biochem J. 1981 Oct 15;200(1):177–180. doi: 10.1042/bj2000177. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Binet A., Claret M. alpha-adrenergic stimulation of respiration in isolated rat hepatocytes. Biochem J. 1983 Mar 15;210(3):867–873. doi: 10.1042/bj2100867. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Blackmore P. F., Hughes B. P., Charest R., Shuman E. A., 4th, Exton J. H. Time course of alpha1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes. J Biol Chem. 1983 Sep 10;258(17):10488–10494. [PubMed] [Google Scholar]
 - Brocks D. G., Siess E. A., Wieland O. H. Distinctive roles of oleate and glucagen in gluconeogenesis. Eur J Biochem. 1980 Dec;113(1):39–43. doi: 10.1111/j.1432-1033.1980.tb06136.x. [DOI] [PubMed] [Google Scholar]
 - Bryla J., Harris E. J., Plumb J. A. The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett. 1977 Aug 15;80(2):443–448. doi: 10.1016/0014-5793(77)80494-8. [DOI] [PubMed] [Google Scholar]
 - Buxton D., Barron L. L., Olson M. S. The effects of alpha-adrenergic agonists on the regulation of the branched chain alpha-ketoacid oxidation in the perfused rat liver. J Biol Chem. 1982 Dec 10;257(23):14318–14323. [PubMed] [Google Scholar]
 - Charest R., Blackmore P. F., Berthon B., Exton J. H. Changes in free cytosolic Ca2+ in hepatocytes following alpha 1-adrenergic stimulation. Studies on Quin-2-loaded hepatocytes. J Biol Chem. 1983 Jul 25;258(14):8769–8773. [PubMed] [Google Scholar]
 - Dehaye J. P., Hughes B. P., Blackmore P. F., Exton J. H. Insulin inhibition of alpha-adrenergic actions in liver. Biochem J. 1981 Mar 15;194(3):949–956. doi: 10.1042/bj1940949. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - ERNSTER L., JALLING O., LOW H., LINDBERG O. Alternative pathways of mitochondrial DPNH oxidation, studied with amytal. Exp Cell Res. 1955;(Suppl 3):124–132. [PubMed] [Google Scholar]
 - ESTABROOK R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem. 1962 Sep;4:231–245. doi: 10.1016/0003-2697(62)90006-4. [DOI] [PubMed] [Google Scholar]
 - Erecińska M., Wilson D. F. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. doi: 10.1007/BF01871584. [DOI] [PubMed] [Google Scholar]
 - Exton J. H., Corbin J. G., Harper S. C. Control of gluconeogenesis in liver. V. Effects of fasting, diabetes, and glucagon on lactate and endogenous metabolism in the perfused rat liver. J Biol Chem. 1972 Aug 25;247(16):4996–5003. [PubMed] [Google Scholar]
 - Exton J. H., Corbin J. G., Park C. R. Control of gluconeogenesis in liver. IV. Differential effects of fatty acids and glucagon on ketogenesis and gluconeogenesis in the perfused rat liver. J Biol Chem. 1969 Aug 10;244(15):4095–4102. [PubMed] [Google Scholar]
 - Fröhlich J., Wieland O. Different actions of glucagon and fatty acids on gluconeogenesis from lactate in the perfused rat liver. Horm Metab Res. 1972 May;4(3):171–175. doi: 10.1055/s-0028-1094094. [DOI] [PubMed] [Google Scholar]
 - Fröhlich J., Wieland O. Glucagon and the permissive action of fatty acids in hepatic gluconeogenesis. Eur J Biochem. 1971 Apr 30;19(4):557–562. doi: 10.1111/j.1432-1033.1971.tb01349.x. [DOI] [PubMed] [Google Scholar]
 - Halestrap A. P., Armston A. E. A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochem J. 1984 Nov 1;223(3):677–685. doi: 10.1042/bj2230677. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Halestrap A. P., Quinlan P. T., Whipps D. E., Armston A. E. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Biochem J. 1986 Jun 15;236(3):779–787. doi: 10.1042/bj2360779. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Halestrap A. P. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem J. 1978 Jun 15;172(3):389–398. doi: 10.1042/bj1720389. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Halestrap A. P. The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals. Biochem J. 1982 Apr 15;204(1):37–47. doi: 10.1042/bj2040037. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Horgan D. J., Singer T. P., Casida J. E. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J Biol Chem. 1968 Feb 25;243(4):834–843. [PubMed] [Google Scholar]
 - Häussinger D., Sies H. Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver. Biochem J. 1984 Aug 1;221(3):651–658. doi: 10.1042/bj2210651. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Jensen C. B., Sistare F. D., Hamman H. C., Haynes R. C., Jr Stimulation of mitochondrial functions by glucagon treatment. Evidence that effects are not artifacts of mitochondrial isolation. Biochem J. 1983 Mar 15;210(3):819–827. doi: 10.1042/bj2100819. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Kimura S., Suzaki T., Kobayashi S., Abe K., Ogata E. Effects of glucagon on the redox states of cytochromes in mitochondria in situ in perfused rat liver. Biochem Biophys Res Commun. 1984 Feb 29;119(1):212–219. doi: 10.1016/0006-291x(84)91640-1. [DOI] [PubMed] [Google Scholar]
 - Kleineke J., Söling H. D. Mitochondrial and extramitochondrial Ca2+ pools in the perfused rat liver. Mitochondria are not the origin of calcium mobilized by vasopressin. J Biol Chem. 1985 Jan 25;260(2):1040–1045. [PubMed] [Google Scholar]
 - LaNoue K. F., Strzelecki T., Finch F. The effect of glucagon on hepatic respiratory capacity. J Biol Chem. 1984 Apr 10;259(7):4116–4121. [PubMed] [Google Scholar]
 - McCormack J. G. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J. 1985 Nov 1;231(3):581–595. doi: 10.1042/bj2310581. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - McCormack J. G. Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+]. FEBS Lett. 1985 Jan 28;180(2):259–264. doi: 10.1016/0014-5793(85)81082-6. [DOI] [PubMed] [Google Scholar]
 - Menahan L. A., Wieland O. The role of endogenous lipid in gluconeogenesis and ketogenesis of perfused rat liver. Eur J Biochem. 1969 Jun;9(2):182–188. doi: 10.1111/j.1432-1033.1969.tb00593.x. [DOI] [PubMed] [Google Scholar]
 - Nicholls D. G., Bernson V. S. Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur J Biochem. 1977 May 16;75(2):601–612. doi: 10.1111/j.1432-1033.1977.tb11560.x. [DOI] [PubMed] [Google Scholar]
 - Nijs P. On the nature of electron and energy transport in mitochondria. I. Multiple inhibition of mitochondrial respiration. Biochim Biophys Acta. 1967;143(3):454–461. doi: 10.1016/0005-2728(67)90051-5. [DOI] [PubMed] [Google Scholar]
 - Otto D. A., Ontko J. A. Structure-function relations between fatty acid oxidation and the mitochondrial inner-membrane--matrix region. Eur J Biochem. 1982 Dec 15;129(2):479–485. doi: 10.1111/j.1432-1033.1982.tb07074.x. [DOI] [PubMed] [Google Scholar]
 - Oviasu O. A., Whitton P. D. Hormonal control of pyruvate dehydrogenase activity in rat liver. Biochem J. 1984 Nov 15;224(1):181–186. doi: 10.1042/bj2240181. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Palmer G., Horgan D. J., Tisdale H., Singer T. P., Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968 Feb 25;243(4):844–847. [PubMed] [Google Scholar]
 - Parrilla R., Jimenez I., Ayuso-Parrilla M. S. Glucagon and insulin control of gluconeogenesis in the perfused isolated rat liver. Effects on cellular metabolite distribution. Eur J Biochem. 1975 Aug 15;56(2):375–383. doi: 10.1111/j.1432-1033.1975.tb02243.x. [DOI] [PubMed] [Google Scholar]
 - Quinlan P. T., Thomas A. P., Armston A. E., Halestrap A. P. Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochem J. 1983 Aug 15;214(2):395–404. doi: 10.1042/bj2140395. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Reinhart P. H., Taylor W. M., Bygrave F. L. Studies on alpha-adrenergic-induced respiration and glycogenolysis in perfused rat liver. J Biol Chem. 1982 Feb 25;257(4):1906–1912. [PubMed] [Google Scholar]
 - Reinhart P. H., Taylor W. M., Bygrave F. L. The contribution of both extracellular and intracellular calcium to the action of alpha-adrenergic agonists in perfused rat liver. Biochem J. 1984 May 15;220(1):35–42. doi: 10.1042/bj2200035. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ross B. D., Hems R., Freedland R. A., Krebs H. A. Carbohydrate metabolism of the perfused rat liver. Biochem J. 1967 Nov;105(2):869–875. doi: 10.1042/bj1050869. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Saggerson E. D. Does fasting decrease the inhibitory effect of malonyl-CoA on hepatic beta-oxidation? Biochem J. 1982 Nov 15;208(2):525–528. doi: 10.1042/bj2080525. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Scholz R., Schwabe U., Soboll S. Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver. Eur J Biochem. 1984 May 15;141(1):223–230. doi: 10.1111/j.1432-1033.1984.tb08179.x. [DOI] [PubMed] [Google Scholar]
 - Scrutton M. C., White M. D. Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by alpha-ketoglutarate and L-glutamate. J Biol Chem. 1974 Sep 10;249(17):5405–5415. [PubMed] [Google Scholar]
 - Shears S. B., Kirk C. J. Determination of mitochondrial calcium content in hepatocytes by a rapid cellular-fractionation technique. Alpha-adrenergic agonists do not mobilize mitochondrial Ca2+. Biochem J. 1984 Apr 15;219(2):383–389. doi: 10.1042/bj2190383. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sies H., Brauser B. Analysis of cellular electron transport systems in liver and other organs by absorbance and fluorescence techniques. Methods Biochem Anal. 1980;26:285–325. doi: 10.1002/9780470110461.ch7. [DOI] [PubMed] [Google Scholar]
 - Sies H., Graf P., Crane D. Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, alpha-adrenergic agonists and the ionophore A23187 in perfused rat liver. Biochem J. 1983 May 15;212(2):271–278. doi: 10.1042/bj2120271. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Siess E. A., Brocks D. G., Wieland O. H. Comparative studies on the influence of hormones on metabolite compartmentation in isolated liver cells during gluconeogenesis from lactate. Biochem Soc Trans. 1978;6(6):1139–1144. doi: 10.1042/bst0061139. [DOI] [PubMed] [Google Scholar]
 - Siess E. A., Wieland O. H. Early kinetics of glucagon action in isolated hepatocytes at the mitochondrial level. Eur J Biochem. 1980 Sep;110(1):203–210. doi: 10.1111/j.1432-1033.1980.tb04856.x. [DOI] [PubMed] [Google Scholar]
 - Sistare F. D., Haynes R. C., Jr The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action. J Biol Chem. 1985 Oct 15;260(23):12748–12753. [PubMed] [Google Scholar]
 - Soboll S., Gründel S., Schwabe U., Scholz R. Influence of fatty acids on energy metabolism. 2. Kinetics of changes in metabolic rates and changes in subcellular adenine nucleotide contents and pH gradients following addition of octanoate and oleate in perfused rat liver. Eur J Biochem. 1984 May 15;141(1):231–236. doi: 10.1111/j.1432-1033.1984.tb08180.x. [DOI] [PubMed] [Google Scholar]
 - Staddon J. M., McGivan J. D. Ca2+-dependent activation of oxoglutarate dehydrogenase by vasopressin in isolated hepatocytes. Biochem J. 1985 Jan 15;225(2):327–333. doi: 10.1042/bj2250327. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Staddon J. M., McGivan J. D. Distinct effects of glucagon and vasopressin on proline metabolism in isolated hepatocytes. The role of oxoglutarate dehydrogenase. Biochem J. 1984 Jan 15;217(2):477–483. doi: 10.1042/bj2170477. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Struck E., Ashmore J., Wieland O. Effects of glucagon and long chain fatty acids on glucose production by isolated perfused rat liver. Adv Enzyme Regul. 1966;4:219–224. doi: 10.1016/0065-2571(66)90016-1. [DOI] [PubMed] [Google Scholar]
 - Struck E., Ashmore J., Wieland O. Stimulierung der Gluconeogenese durch langkettige Fettsäuren und Glucagon. Biochem Z. 1965 Nov 5;343(1):107–110. [PubMed] [Google Scholar]
 - Strzelecki T., Thomas J. A., Koch C. D., LaNoue K. F. The effect of hormones on proton compartmentation in hepatocytes. J Biol Chem. 1984 Apr 10;259(7):4122–4129. [PubMed] [Google Scholar]
 - Sugano T., Shiota M., Tanaka T., Miyamae Y., Shimada M., Oshino N. Intracellular redox state and stimulation of gluconeogenesis by glucagon and norepinephrine in the perfused rat liver. J Biochem. 1980 Jan;87(1):153–166. doi: 10.1093/oxfordjournals.jbchem.a132721. [DOI] [PubMed] [Google Scholar]
 - Sugden M. C., Ball A. J., Ilic V., Williamson D. H. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by vasopressin: effects of Ca2+. FEBS Lett. 1980 Jul 11;116(1):37–40. doi: 10.1016/0014-5793(80)80523-0. [DOI] [PubMed] [Google Scholar]
 - Sugden M. C., Watts D. I. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin and angiotensin. A possible mechanism of action. Biochem J. 1983 Apr 15;212(1):85–91. doi: 10.1042/bj2120085. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Söling H. D., Willms B., Friedrichs D., Kleineke J. Regulation of gluconeogenesis by fatty acid oxidation in isolated perfused livers of non-starved rats. Eur J Biochem. 1968 Apr;4(3):364–372. doi: 10.1111/j.1432-1033.1968.tb00220.x. [DOI] [PubMed] [Google Scholar]
 - Taylor W. M., Reinhart P. H., Bygrave F. L. Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver. Biochem J. 1983 Jun 15;212(3):555–565. doi: 10.1042/bj2120555. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Thayer W. S., Rubin E. Antimycin inhibition as a probe of mitochondrial function in isolated rat hepatocytes. Effects of chronic ethanol consumption. Biochim Biophys Acta. 1982 Dec 30;721(4):328–335. doi: 10.1016/0167-4889(82)90086-6. [DOI] [PubMed] [Google Scholar]
 - Thomas A. P., Halestrap A. P. Computer stimulation of the effects of alpha-cyano-4-hydroxycinnamate on gluconeogenesis from L-lactate in rat liver cells. Biochem J. 1981 Sep 15;198(3):561–564. doi: 10.1042/bj1980561. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Thomas A. P., Martin-Requero A., Williamson J. R. Interactions between insulin and alpha 1-adrenergic agents in the regulation of glycogen metabolism in isolated hepatocytes. J Biol Chem. 1985 May 25;260(10):5963–5973. [PubMed] [Google Scholar]
 - Titheradge M. A., Haynes R. C., Jr The control of uncoupler-activated ATPase activity in rat liver mitochondria by adenine nucleotide transport. The effect of glucagon treatment. J Biol Chem. 1980 Feb 25;255(4):1471–1477. [PubMed] [Google Scholar]
 - Titheradge M. A., Haynes R. C., Jr The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. Arch Biochem Biophys. 1980 Apr 15;201(1):44–55. doi: 10.1016/0003-9861(80)90485-3. [DOI] [PubMed] [Google Scholar]
 - Titheradge M. A., Stringer J. L., Haynes R. C., Jr The stimulation of the mitochondrial uncoupler-dependent ATPase in isolated hepatocytes by catecholamines and glucagon and its relationship to gluconeogenesis. Eur J Biochem. 1979 Dec;102(1):117–124. doi: 10.1111/j.1432-1033.1979.tb06271.x. [DOI] [PubMed] [Google Scholar]
 - Wanders R. J., Groen A. K., Meijer A. J., Tager J. M. Determination of the free-energy difference of the adenine nucleotide translocator reaction in rat-liver mitochondria using intra- and extramitochondrial ATP-utilizing reactions. FEBS Lett. 1981 Sep 28;132(2):201–206. doi: 10.1016/0014-5793(81)81160-x. [DOI] [PubMed] [Google Scholar]
 - Whipps D. E., Halestrap A. P. Rat liver mitochondria prepared in mannitol media demonstrate increased mitochondrial volumes compared with mitochondria prepared in sucrose media. Relationship to the effect of glucagon on mitochondrial function. Biochem J. 1984 Jul 1;221(1):147–152. doi: 10.1042/bj2210147. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
 - Williamson J. R., Browning E. T., Scholz R. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4607–4616. [PubMed] [Google Scholar]
 - Williamson J. R., Browning E. T., Thurman R. G., Scholz R. Inhibition of glucagon effects in perfused rat liver by (+)decanoylcarnitine. J Biol Chem. 1969 Sep 25;244(18):5055–5064. [PubMed] [Google Scholar]
 - Williamson J. R., Herczeg B., Coles H., Danish R. Studies on the ketogenic effect of glucagon in intact rat liver. Biochem Biophys Res Commun. 1966 Aug 12;24(3):437–442. doi: 10.1016/0006-291x(66)90179-3. [DOI] [PubMed] [Google Scholar]
 - Williamson J. R., Kreisberg R. A., Felts P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci U S A. 1966 Jul;56(1):247–254. doi: 10.1073/pnas.56.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Williamson J. R., Rostand S. G., Peterson M. J. Control factors affecting gluconeogenesis in perfused rat liver. Effects of 4-pentenoic acid. J Biol Chem. 1970 Jun;245(12):3242–3251. [PubMed] [Google Scholar]
 - Williamson J. R., Scholz R., Browning E. T. Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4617–4627. [PubMed] [Google Scholar]
 - Williamson J. R., Steinman R., Coll K., Rich T. L. Energetics of citrulline synthesis by rat liver mitochondria. J Biol Chem. 1981 Jul 25;256(14):7287–7297. [PubMed] [Google Scholar]
 - Wölfle D., Schmidt H., Jungermann K. Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures. Eur J Biochem. 1983 Oct 3;135(3):405–412. doi: 10.1111/j.1432-1033.1983.tb07667.x. [DOI] [PubMed] [Google Scholar]
 
