Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Aug 15;238(1):301–304. doi: 10.1042/bj2380301

Properties of signal-sequence peptides at an air-water interface.

G D Fidelio, B M Austen, D Chapman, J A Lucy
PMCID: PMC1147130  PMID: 3800938

Abstract

The surface behaviour of three signal-sequence polypeptides (the pretrypsinogen 2 signal sequence, a synthetic consensus signal sequence and the putative signal sequence of ovalbumin) were studied at an air-water interface. It was found that the surface stabilities of the spread polypeptide films were higher than those of polypeptides and proteins previously investigated (including melittin and membrane proteins), and that the signal peptides had a much lower affinity for the interface than had other peptides and proteins. The observed molecular areas of the signal-sequence peptides indicated that the molecules have a considerable degree of secondary structure at the surface interface.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austen B. M., Hermon-Taylor J., Kaderbhai M. A., Ridd D. H. Design and synthesis of a consensus signal sequence that inhibits protein translocation into rough microsomal vesicles. Biochem J. 1984 Nov 15;224(1):317–325. doi: 10.1042/bj2240317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austen B. M., Ridd D. H. The signal peptide and its role in membrane penetration. Biochem Soc Symp. 1981;(46):235–258. [PubMed] [Google Scholar]
  3. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colacicco G. Surface behavior of membrane proteins. Ann N Y Acad Sci. 1972 Jun 20;195:224–261. [PubMed] [Google Scholar]
  5. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  6. Fidelio G. D., Maggio B., Cumar F. A., Caputto R. Interaction of glycosphingolipids with melittin and myelin basis protein in monolayers. Biochem J. 1981 Feb 1;193(2):643–646. doi: 10.1042/bj1930643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidelio G. D., Maggio B., Cumar F. A. Interaction of myelin basic protein, melittin and bovine serum albumin with gangliosides, sulphatide and neutral glycosphingolipids in mixed monolayers. Chem Phys Lipids. 1984 Aug;35(3):231–245. doi: 10.1016/0009-3084(84)90049-5. [DOI] [PubMed] [Google Scholar]
  8. Fidelio G. D., Maggio B., Cumar F. A. Interaction of soluble and membrane proteins with monolayers of glycosphingolipids. Biochem J. 1982 Jun 1;203(3):717–725. doi: 10.1042/bj2030717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fidelio G. D., Maggio B., Cumar F. A. Molecular parameters and physical state of neutral glycosphingolipids and gangliosides in monolayers at different temperatures. Biochim Biophys Acta. 1986 Jan 29;854(2):231–239. doi: 10.1016/0005-2736(86)90115-x. [DOI] [PubMed] [Google Scholar]
  10. Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
  11. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  12. Maggio B., Cumar F. A., Caputto R. Surface behaviour of gangliosides and related glycosphingolipids. Biochem J. 1978 Jun 1;171(3):559–565. doi: 10.1042/bj1710559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maggio B., Lucy J. A. Studies on mixed monolayers of phospholipids and fusogenic lipids. Biochem J. 1975 Sep;149(3):597–608. doi: 10.1042/bj1490597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer D. I., Krause E., Dobberstein B. Secretory protein translocation across membranes-the role of the "docking protein'. Nature. 1982 Jun 24;297(5868):647–650. doi: 10.1038/297647a0. [DOI] [PubMed] [Google Scholar]
  15. Mitchell J., Irons L., Palmer G. J. A study of the spread and adsorbed films of milk proteins. Biochim Biophys Acta. 1970 Jan 20;200(1):138–150. doi: 10.1016/0005-2795(70)90052-8. [DOI] [PubMed] [Google Scholar]
  16. Phillips M. C., Hauser H., Leslie R. B., Oldani D. A comparison of the interfacial interactions of the apoprotein from high density lipoprotein and beta-casein with phospholipids. Biochim Biophys Acta. 1975 Oct 17;406(3):402–414. doi: 10.1016/0005-2736(75)90019-x. [DOI] [PubMed] [Google Scholar]
  17. Quinn P. J., Dawson R. M. Interactions of cytochrome c and [14C]. Biochem J. 1969 Oct;115(1):65–75. doi: 10.1042/bj1150065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tabe L., Krieg P., Strachan R., Jackson D., Wallis E., Colman A. Segregation of mutant ovalbumins and ovalbumin-globin fusion proteins in Xenopus oocytes. Identification of an ovalbumin signal sequence. J Mol Biol. 1984 Dec 15;180(3):645–666. doi: 10.1016/0022-2836(84)90031-7. [DOI] [PubMed] [Google Scholar]
  19. Walter P., Blobel G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7112–7116. doi: 10.1073/pnas.77.12.7112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wickner W. Assembly of proteins into membranes. Science. 1980 Nov 21;210(4472):861–868. doi: 10.1126/science.7001628. [DOI] [PubMed] [Google Scholar]
  21. von Heijne G., Blomberg C. Trans-membrane translocation of proteins. The direct transfer model. Eur J Biochem. 1979 Jun;97(1):175–181. doi: 10.1111/j.1432-1033.1979.tb13100.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES