Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Sep 1;238(2):485–490. doi: 10.1042/bj2380485

The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. A circular-dichroism study.

S R Martin, P M Bayley
PMCID: PMC1147160  PMID: 3800949

Abstract

Near-u.v. and far-u.v. c.d. spectra of bovine testis calmodulin and its tryptic fragments (TR1C, N-terminal half, residues 1-77, and TR2C, C-terminal half, residues 78-148) were recorded in metal-ion-free buffer and in the presence of saturating concentrations of Ca2+ or Cd2+ under a range of different solvent conditions. The results show the following: if there is any interaction between the N-terminal and C-terminal halves of calmodulin, it has not apparent effect on the secondary or tertiary structure of either half; the conformational changes induced by Ca2+ or Cd2+ are substantially greater in TR2C than they are in TR1C; the presence of Ca2+ or Cd2+ confers considerable stability with respect to urea-induced denaturation, both for the whole molecule and for either of the tryptic fragments; a thermally induced transition occurs in whole calmodulin at temperatures substantially below the temperature of major thermal unfolding, both in the presence and in the absence of added metal ion; the effects of Cd2+ are identical with those of Ca2+ under all conditions studied.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A., Forsén S., Thulin E., Vogel H. J. Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry. 1983 May 10;22(10):2309–2313. doi: 10.1021/bi00279a001. [DOI] [PubMed] [Google Scholar]
  2. Andersson T., Drakenberg T., Forsén S., Thulin E. Characterization of the Ca2+ binding sites of calmodulin from bovine testis using 43Ca and 113Cd NMR. Eur J Biochem. 1982 Sep 1;126(3):501–505. doi: 10.1111/j.1432-1033.1982.tb06808.x. [DOI] [PubMed] [Google Scholar]
  3. Brzeska H., Venyaminov SVu, Grabarek Z., Drabikowski W. Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments. FEBS Lett. 1983 Mar 7;153(1):169–173. doi: 10.1016/0014-5793(83)80141-0. [DOI] [PubMed] [Google Scholar]
  4. Crouch T. H., Klee C. B. Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry. 1980 Aug 5;19(16):3692–3698. doi: 10.1021/bi00557a009. [DOI] [PubMed] [Google Scholar]
  5. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  6. Drabikowski W., Brzeska H., Venyaminov SYu Tryptic fragments of calmodulin. Ca2+- and Mg2+-induced conformational changes. J Biol Chem. 1982 Oct 10;257(19):11584–11590. [PubMed] [Google Scholar]
  7. Drabikowski W., Kuznicki J., Grabarek Z. Similarity in Ca2+-induced changes between troponic-C and protein activator of 3':5'-cyclic nucleotide phosphodiesterase and their tryptic fragments. Biochim Biophys Acta. 1977 Nov 23;485(1):124–133. doi: 10.1016/0005-2744(77)90199-1. [DOI] [PubMed] [Google Scholar]
  8. Forsén S., Thulin E., Drakenberg T., Krebs J., Seamon K. A 113Cd NMR study of calmodulin and its interaction with calcium, magnesium and trifluoperazine. FEBS Lett. 1980 Aug 11;117(1):189–194. doi: 10.1016/0014-5793(80)80942-2. [DOI] [PubMed] [Google Scholar]
  9. Gangola P., Pant H. C. Temperature dependent conformational changes in calmodulin. Biochem Biophys Res Commun. 1983 Feb 28;111(1):301–305. doi: 10.1016/s0006-291x(83)80151-x. [DOI] [PubMed] [Google Scholar]
  10. Hennessey J. P., Jr, Johnson W. C., Jr Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal Biochem. 1982 Sep 1;125(1):177–188. doi: 10.1016/0003-2697(82)90400-6. [DOI] [PubMed] [Google Scholar]
  11. Kilhoffer M. C., Demaille J. G., Gérard D. Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength. Biochemistry. 1981 Jul 21;20(15):4407–4414. doi: 10.1021/bi00518a027. [DOI] [PubMed] [Google Scholar]
  12. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  13. Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
  14. Martin S. R., Andersson Teleman A., Bayley P. M., Drakenberg T., Forsen S. Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur J Biochem. 1985 Sep 16;151(3):543–550. doi: 10.1111/j.1432-1033.1985.tb09137.x. [DOI] [PubMed] [Google Scholar]
  15. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  16. Richman P. G., Klee C. B. Conformation-dependent nitration of the protein activator of cyclic adenosine 3',5'-monophosphate phosphodiesterase. Biochemistry. 1978 Mar 7;17(5):928–935. doi: 10.1021/bi00598a029. [DOI] [PubMed] [Google Scholar]
  17. Siegel N., Haug A. Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies. Biochim Biophys Acta. 1983 Apr 14;744(1):36–45. doi: 10.1016/0167-4838(83)90337-0. [DOI] [PubMed] [Google Scholar]
  18. Strickland E. H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974 Jan;2(1):113–175. doi: 10.3109/10409237409105445. [DOI] [PubMed] [Google Scholar]
  19. Thulin E., Andersson A., Drakenberg T., Forsén S., Vogel H. J. Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies. Biochemistry. 1984 Apr 10;23(8):1862–1870. doi: 10.1021/bi00303a043. [DOI] [PubMed] [Google Scholar]
  20. Walsh M., Stevens F. C. Characterization of tryptic fragments obtained from bovine brain protein modulator of cyclic nucleotide phosphodiesterase. J Biol Chem. 1977 Nov 10;252(21):7440–7443. [PubMed] [Google Scholar]
  21. Walsh M., Stevens F. C., Oikawa K., Kay C. M. Circular dichroism studies of native and chemically modified Ca2+-dependent protein modulator. Can J Biochem. 1979 Mar;57(3):267–278. doi: 10.1139/o79-034. [DOI] [PubMed] [Google Scholar]
  22. Wolff D. J., Poirier P. G., Brostrom C. O., Brostrom M. A. Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. J Biol Chem. 1977 Jun 25;252(12):4108–4117. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES