Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Oct 15;239(2):451–458. doi: 10.1042/bj2390451

Drug-binding properties of rat alpha-foetoprotein. Specificities of the phenylbutazone-binding and warfarin-binding sites.

F Hervé, K M Rajkowski, M T Martin, P Dessen, N Cittanova
PMCID: PMC1147300  PMID: 2434073

Abstract

Rat alpha-foetoprotein (alpha-FP) strongly binds the drugs warfarin and phenylbutazone, as does albumin; however, the binding sites for the two drugs seemed to be different. This possibility and the specificity of this/these drug-binding site(s) of rat alpha-FP were investigated by competitive protein-binding experiments with a variety of drugs, representing different pharmacological groups, and biomolecules that are strongly bound by the foetal protein and that are suspected to play a specific role during foetal development. The binding mechanisms were further investigated by using comparisons between computer-derived theoretical displacement curves and experimental points in order to distinguish different possible binding models. The results indicate: that warfarin and phenylbutazone are bound at two distinct sites on rat alpha-FP and that a negative modulatory effect is exerted between the two sites; that the degree of specificity of these two drug-binding sites is different, since the warfarin-binding site appears to be specific for the binding of coumarinic and anthranilic drugs whereas that for phenylbutazone is able to bind substances of very varied chemical structure and is more hydrophobic; that the phenylbutazone-binding site is the site that binds oestrogens that thyroid hormones and, probably, fatty acids and bilirubin are bound at (an)other site(s) but exert negative modulatory effects on phenylbutazone binding. The nature of the different binding areas of rat alpha-FP is compared with that of those already proposed for albumin. The potential risks of toxicity of such interactions between drugs and/or biomolecules on foetal development are also discussed.

Full text

PDF
453

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aussel C., Masseyeff R. Human alpha-fetoprotein-fatty acid interaction. Biochem Biophys Res Commun. 1983 Aug 30;115(1):38–45. doi: 10.1016/0006-291x(83)90965-8. [DOI] [PubMed] [Google Scholar]
  2. Aussel C. Presence of three different binding sites for retinoids, bilirubin and estrogen or arachidonic acid on rat alpha-fetoprotein. Tumour Biol. 1985;6(2):179–193. [PubMed] [Google Scholar]
  3. Cittanova N., Grigorova A. M., Benassayag C., Nunez E., Jayle M. F. Affinity chromatography purification of rat alpha 1-foetoprotein. FEBS Lett. 1974 Apr 15;41(1):21–24. doi: 10.1016/0014-5793(74)80944-0. [DOI] [PubMed] [Google Scholar]
  4. Desfosses B., Herve F., Moenner M., Urios P., Cittanova N., Dessen P. Interaction between rat alpha 1 fetoprotein and fluorescent derivatives of estrone in relation to the position and type of the fluorescent label. J Steroid Biochem. 1983 Dec;19(6):1811–1816. doi: 10.1016/0022-4731(83)90364-3. [DOI] [PubMed] [Google Scholar]
  5. Fehske K. J., Schläfer U., Wollert U., Müller W. E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone. Mol Pharmacol. 1982 Mar;21(2):387–393. [PubMed] [Google Scholar]
  6. Feldman H. A. Mathematical theory of complex ligand-binding systems of equilibrium: some methods for parameter fitting. Anal Biochem. 1972 Aug;48(2):317–338. doi: 10.1016/0003-2697(72)90084-x. [DOI] [PubMed] [Google Scholar]
  7. Gorin M. B., Cooper D. L., Eiferman F., van de Rijn P., Tilghman S. M. The evolution of alpha-fetoprotein and albumin. I. A comparison of the primary amino acid sequences of mammalian alpha-fetoprotein and albumin. J Biol Chem. 1981 Feb 25;256(4):1954–1959. [PubMed] [Google Scholar]
  8. Hervé F., Grigorova A. M., Cittanova N. Evidence for an intrinsic factor bound to rat alpha 1 fetoprotein. Fluorescence investigation. Reprod Nutr Dev. 1981;21(3):391–397. doi: 10.1051/rnd:19810305. [DOI] [PubMed] [Google Scholar]
  9. Hervé F., Grigorova A. M., Rajkowski K., Cittanova N. Differences in the binding of thyroid hormones and indoles by rat alpha 1-fetoprotein and serum albumin. Eur J Biochem. 1982 Mar 1;122(3):609–612. doi: 10.1111/j.1432-1033.1982.tb06482.x. [DOI] [PubMed] [Google Scholar]
  10. Hervé F., Rajkowski K., Martin M. T., Dessen P., Cittanova N. Drug-binding properties of rat alpha 1-foetoprotein. Binding of warfarin, phenylbutazone, azapropazone, diazepam, digitoxin and cholic acid. Biochem J. 1984 Jul 15;221(2):401–406. doi: 10.1042/bj2210401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirano K., Watanabe Y., Adachi T., Ito Y., Sugiura M. Drug-binding properties of human alpha-foetoprotein. Biochem J. 1985 Oct 1;231(1):189–191. doi: 10.1042/bj2310189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsia J. C., Wong L. T., Deutsch H. F. Determination of the distribution of fatty acids and diethylstilbestrol between serum albumin and alpha-fetoprotein by concanavalin A affinity chromatography. Biochim Biophys Acta. 1986 Feb 19;880(2-3):117–122. doi: 10.1016/0304-4165(86)90070-x. [DOI] [PubMed] [Google Scholar]
  13. Kragh-Hansen U. Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and Phenol Red on human serum albumin. Biochem J. 1983 Jan 1;209(1):135–142. doi: 10.1042/bj2090135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin. Biochem J. 1985 Feb 1;225(3):629–638. doi: 10.1042/bj2250629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madsen B. W., Ellis G. M. Cooperative interaction of warfarin and phenylbutazone with human serum albumin. Biochem Pharmacol. 1981 Jun 1;30(11):1169–1173. doi: 10.1016/0006-2952(81)90293-8. [DOI] [PubMed] [Google Scholar]
  16. Madsen B. W., Tearne P. D. Spectrophotofluorometric evidence of negatively cooperative binding of warfarin and phenylbutazone to human serum albumin. Life Sci. 1980 Jan 21;26(3):173–179. doi: 10.1016/0024-3205(80)90291-x. [DOI] [PubMed] [Google Scholar]
  17. Nunez E. A., Benassayag C., Savu L., Vallette G., Delorme J. Oestrogen binding function of alpha 1-fetoprotein. J Steroid Biochem. 1979 Jul;11(1A):237–243. doi: 10.1016/0022-4731(79)90303-0. [DOI] [PubMed] [Google Scholar]
  18. Savu L., Benassayag C., Vallette G., Christeff N., Nunez E. Mouse alpha 1-fetoprotein and albumin. A comparison of their binding properties with estrogen and fatty acid ligands. J Biol Chem. 1981 Sep 25;256(18):9414–9418. [PubMed] [Google Scholar]
  19. Sjöholm I., Ekman B., Kober A., Ljungstedt-Påhlman I., Seiving B., Sjödin T. Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol Pharmacol. 1979 Nov;16(3):767–777. [PubMed] [Google Scholar]
  20. Versée V., Barel A. O. Interactions of rat alpha-foetoprotein with bilirubin. Biochem J. 1979 Jun 1;179(3):705–707. doi: 10.1042/bj1790705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber G. Ligand binding and internal equilibria in proteins. Biochemistry. 1972 Feb 29;11(5):864–878. doi: 10.1021/bi00755a028. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES