Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Feb 1;241(3):877–881. doi: 10.1042/bj2410877

A novel approach to study of the structural basis of enzyme polymorphism. Analysis of carboxylesterase B of Escherichia coli as model.

B Picard, P Goullet, R Krishnamoorthy
PMCID: PMC1147642  PMID: 3297040

Abstract

In order to understand the structural basis of charge differences among enzyme variants without undertaking purification and sequencing of the protein, an original approach was developed. The approach is applicable to any enzyme or protein provided that there is a specific staining procedure. This consists, as a first step, in the projection of electrophoretically obtained mobility values versus pI of all variants into a two-dimensional profile. In a second step, starting from the most common variant, various theoretical possibilities of substitutions are envisaged, taking into consideration the pH of the electrophoretic conditions, pI of the variants and range of variations of the pK values of several amino acid side chains. In a third step, verification of the theoretical data is obtained through comparative protein titration curves by combined isoelectrofocusing-electrophoresis of several pairs of relevant variants. The validity of this approach is tested on the highly polymorphic carboxylesterase B enzyme of Escherichia coli and is found to provide valuable information.

Full text

PDF
881

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein S. C., Throckmorton L. H., Hubby J. L. Still more genetic variability in natural populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3928–3931. doi: 10.1073/pnas.70.12.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coyne J. A. Lack of genic similarity between two sibling species of drosophila as revealed by varied techniques. Genetics. 1976 Nov;84(3):593–607. doi: 10.1093/genetics/84.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dossi G., Celentano F., Gianazza E., Righetti P. G. Isoelectric focusing in immobilized pH gradients: generation of extended pH intervals. J Biochem Biophys Methods. 1983 Feb;7(2):123–142. doi: 10.1016/0165-022x(83)90046-5. [DOI] [PubMed] [Google Scholar]
  4. Goullet P. Esterase electrophoretic pattern relatedness between Shigella species and Escherichia coli. J Gen Microbiol. 1980 Apr;117(2):493–500. doi: 10.1099/00221287-117-2-493. [DOI] [PubMed] [Google Scholar]
  5. Goullet P., Picard B. Highly pathogenic strains of Escherichia coli revealed by the distinct electrophoretic patterns of carboxylesterase B. J Gen Microbiol. 1986 Jul;132(7):1853–1858. doi: 10.1099/00221287-132-7-1853. [DOI] [PubMed] [Google Scholar]
  6. Goullet P., Picard B., Laget P. F. Purification and properties of carboxylesterase B of Escherichia coli. Ann Microbiol (Paris) 1984 May-Jun;135A(3):375–387. doi: 10.1016/s0769-2609(84)80079-4. [DOI] [PubMed] [Google Scholar]
  7. Hubby J. L., Lewontin R. C. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):577–594. doi: 10.1093/genetics/54.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. King J. L., Ohta T. Polyallelic mutational equilibria. Genetics. 1975 Apr;79(4):681–691. doi: 10.1093/genetics/79.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krishnamoorthy R., Bosisio A. B., Righetti P. G. Titration curves of liganded hemoglobins by combined isoelectric focusing-electrophoresis. FEBS Lett. 1978 Oct 15;94(2):319–323. doi: 10.1016/0014-5793(78)80966-1. [DOI] [PubMed] [Google Scholar]
  10. LAWRENCE S. H., MELNICK P. J., WEIMER H. E. A species comparison of serum proteins and enzymes by starch gel electrophoresis. Proc Soc Exp Biol Med. 1960 Dec;105:572–575. doi: 10.3181/00379727-105-26180. [DOI] [PubMed] [Google Scholar]
  11. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  12. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  13. Righetti P. G., Krishnamoorthy F., Lapoumeroulie C., Labie D. Titration curves of polypeptide chains by combined isoelectric focusing-electrophoresis in 8 M urea. J Chromatogr. 1979 Sep 21;177(2):219–225. doi: 10.1016/s0021-9673(01)96317-4. [DOI] [PubMed] [Google Scholar]
  14. Singh R. S., Lewontin R. C., Felton A. A. Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics. 1976 Nov;84(3):609–629. doi: 10.1093/genetics/84.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. URIEL J. [Characterization of cholinesterase and other carboxylic esterases after electrophoresis and immunoelectrophoresis on agar. I. Application to the study of esterases of normal human serum]. Ann Inst Pasteur (Paris) 1961 Jul;101:104–119. [PubMed] [Google Scholar]
  16. Uriel J. Méthode d'électrophorèse dans des gels d'acrylamide-agarose. Bull Soc Chim Biol (Paris) 1966;48(8):969–982. [PubMed] [Google Scholar]
  17. Vesterberg O., Svensson H. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chem Scand. 1966;20(3):820–834. doi: 10.3891/acta.chem.scand.20-0820. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES