Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Mar 15;242(3):817–824. doi: 10.1042/bj2420817

Expression of UDP-N-acetylgalactosamine: beta-galactose beta 1,4-N-acetylgalactosaminyltransferase in functionally defined T-cell clones.

A Conzelmann, C Bron
PMCID: PMC1147783  PMID: 3109400

Abstract

To measure UDP-N-acetylgalactosamine: beta-galactose beta 1,4-N-acetylgalactosaminyltransferase (beta 1,4-GalNActransferase) in crude cell and tissue extracts we designed an assay containing UDP-[3H]N-acetylgalactosamine as donor and biotinylated human glycophorin A as an acceptor. After incubation the labelled acceptor was separated by the use of avidin-agarose from extract-derived endogenous acceptors. This assay permitted one to measure specifically the beta 1,4-GalNActransferase in crude extracts. This glycosyltransferase has previously been shown to be involved in the biosynthesis of Vicia villosa (hairy winter vetch)-lectin (VV)-binding sites of the murine cytotoxic T-cell line B6.1. Since VV-binding sites are a distinct marker for the cytotoxic subclass of murine T-lymphocytes, we used this assay to determine enzyme levels in a panel of functionally defined murine T-cell clones. Non-cytolytic T-cell lines generally have low activity, whereas most cytotoxic lines have high levels of activity. However, one cytotoxic T-cell line does not express the enzyme, although it has large numbers of VV-binding sites. This suggests the existence of another type of VV-binding sites which is independent of the beta 1,4-GalNActransferase in some cytotoxic-T-lymphocyte lines. The enzyme was also assayed in a variety of other tissues and found to have a very high activity in the intestine but a low activity in most other tissues. This was in considerable contrast with the ubiquitously high expression of UDP-GalNAc:peptide alpha 1-GalNActransferase. Therefore, the beta 1,4-GalNActransferase seems to be regulated during differentiation.

Full text

PDF
820

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew M. E., Braciale V. L., Braciale T. J. Regulation of interleukin 2 receptor expression on murine cytotoxic T lymphocyte clones. J Immunol. 1984 Feb;132(2):839–844. [PubMed] [Google Scholar]
  2. Blanchard D., Cartron J. P., Fournet B., Montreuil J., van Halbeek H., Vliegenthart J. F. Primary structure of the oligosaccharide determinant of blood group Cad specificity. J Biol Chem. 1983 Jun 25;258(12):7691–7695. [PubMed] [Google Scholar]
  3. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  4. Braciale V. L., Friedman H. P., Braciale T. J. A method for the preparation of Vicia villosa lectin and a rosette procedure for fractionation of lectin-binding lymphocytes. J Immunol Methods. 1981;43(3):241–250. doi: 10.1016/0022-1759(81)90171-x. [DOI] [PubMed] [Google Scholar]
  5. Conzelmann A., Kornfeld S. A murine cytotoxic T lymphocyte cell line resistant to Vicia villosa lectin is deficient in UDP-GalNAc:beta-galactose beta 1,4-N-acetylgalactosaminyltransferase. J Biol Chem. 1984 Oct 25;259(20):12536–12542. [PubMed] [Google Scholar]
  6. Conzelmann A., Kornfeld S. Beta-linked N-acetylgalactosamine residues present at the nonreducing termini of O-linked oligosaccharides of a cloned murine cytotoxic T lymphocyte line are absent in a Vicia villosa lectin-resistant mutant cell line. J Biol Chem. 1984 Oct 25;259(20):12528–12535. [PubMed] [Google Scholar]
  7. Conzelmann A., Pink R., Acuto O., Mach J. P., Dolivo S., Nabholz M. Presence of T 145 on cytolytic T cell lines and their lectin-resistant mutants. Eur J Immunol. 1980 Nov;10(11):860–868. doi: 10.1002/eji.1830101111. [DOI] [PubMed] [Google Scholar]
  8. Conzelmann A., Silva A., Cianfriglia M., Tougne C., Sekaly R. P., Nabholz M. Correlated expression of T cell growth factor dependence, sensitivity to Vicia villosa lectin, and cytolytic activity in hybrids between cytolytic T cells and T lymphomas. J Exp Med. 1982 Nov 1;156(5):1335–1351. doi: 10.1084/jem.156.5.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corradin G., Juillerat M. A., Engers H. D. Differential effects of two anti-apo-cytochrome c-specific monoclonal antibodies on the function of apo-cytochrome c-specific murine T cell clones. J Immunol. 1984 Dec;133(6):2915–2919. [PubMed] [Google Scholar]
  10. Elhammer A., Kornfeld S. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells. J Cell Biol. 1984 Jul;99(1 Pt 1):327–331. doi: 10.1083/jcb.99.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erard F., Corthesy P., Smith K. A., Fiers W., Conzelmann A., Nabholz M. Characterization of soluble factors that induce the cytolytic activity and the expression of T cell growth factor receptors of a T cell hybrid. J Exp Med. 1984 Aug 1;160(2):584–599. doi: 10.1084/jem.160.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finne J. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem. 1982 Oct 25;257(20):11966–11970. [PubMed] [Google Scholar]
  13. Fowlkes B. J., Waxdal M. J., Sharrow S. O., Thomas C. A., 3rd, Asofsky R., Mathieson B. J. Differential binding of fluorescein-labeled lectins to mouse thymocytes: subsets revealed by flow microfluorometry. J Immunol. 1980 Aug;125(2):623–630. [PubMed] [Google Scholar]
  14. Fukuda M., Dell A., Fukuda M. N. Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem. 1984 Apr 25;259(8):4782–4791. [PubMed] [Google Scholar]
  15. Haas W., Mathur-Rochat J., Pohlit H., Nabholz M., von Boehmer H. Cytotoxic T cell responses to haptenated cells. III. Isolation and specificity analysis of continuously growing clones. Eur J Immunol. 1980 Nov;10(11):828–834. doi: 10.1002/eji.1830101106. [DOI] [PubMed] [Google Scholar]
  16. Kaufmann Y., Berke G. Cell surface glycoproteins of cytotoxic T lymphocytes induced in vivo and in vitro. J Immunol. 1981 Apr;126(4):1443–1446. [PubMed] [Google Scholar]
  17. Kelso A., MacDonald H. R., Smith K. A., Cerottini J. C., Brunner K. T. Interleukin 2 enhancement of lymphokine secretion by T lymphocytes: analysis of established clones and primary limiting dilution microcultures. J Immunol. 1984 Jun;132(6):2932–2938. [PubMed] [Google Scholar]
  18. Kimura A. K., Wigzell H. Cell surface glycoproteins of murine cytotoxic T lymphocytes. I. T 145, a new cell surface glycoprotein selectively expressed on Ly 1-2+ cytotoxic T lymphocytes. J Exp Med. 1978 May 1;147(5):1418–1434. doi: 10.1084/jem.147.5.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kimura A., Wigzell H., Holmquist G., Ersson B., Carlsson P. Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein, T 145. J Exp Med. 1979 Feb 1;149(2):473–484. doi: 10.1084/jem.149.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kraal G., Weissman I. L., Butcher E. C. Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature. 1982 Jul 22;298(5872):377–379. doi: 10.1038/298377a0. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lang I., Banga J. P., Varey A. M., Gunn H., Cooke A., Roitt I. M. Direct staining of mouse T lymphoblasts with fluoresceinated Vicia villosa lectin. Immunology. 1982 Aug;46(4):769–776. [PMC free article] [PubMed] [Google Scholar]
  23. Lefrancois L., Kanagawa O. Coordinate expression of cytolytic activity and cytotoxic T cell-specific carbohydrate antigens in a T cell hybridoma. J Immunol. 1986 Feb 15;136(4):1171–1177. [PubMed] [Google Scholar]
  24. Lefrancois L., Puddington L., Machamer C. E., Bevan M. J. Acquisition of cytotoxic T lymphocyte-specific carbohydrate differentiation antigens. J Exp Med. 1985 Oct 1;162(4):1275–1293. doi: 10.1084/jem.162.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lefrançois L., Bevan M. J. Functional modifications of cytotoxic T-lymphocyte T200 glycoprotein recognized by monoclonal antibodies. Nature. 1985 Apr 4;314(6010):449–452. doi: 10.1038/314449a0. [DOI] [PubMed] [Google Scholar]
  26. MacDonald H. R., Bron C., Rousseaux M., Horvath C., Cerottini J. C. Production and characterization of monoclonal anti-Thy-1 antibodies that stimulate lymphokine production by cytolytic T cell clones. Eur J Immunol. 1985 May;15(5):495–501. doi: 10.1002/eji.1830150514. [DOI] [PubMed] [Google Scholar]
  27. MacDonald H. R., Mach J. P., Schreyer M., Zaech P., Cerottini J. C. Flow cytofluorometric analysis of the binding of Vicia villosa lectin to T lymphoblasts: lack of correlation with cytolytic function. J Immunol. 1981 Mar;126(3):883–886. [PubMed] [Google Scholar]
  28. Nelsestuen G. L., Kirkwood S. A simple, economical synthesis of uridine diphospho-N-acetylgalactosamine-6-3H. Anal Biochem. 1971 Apr;40(2):359–363. doi: 10.1016/0003-2697(71)90395-2. [DOI] [PubMed] [Google Scholar]
  29. Pedrazzini T., Louis J. A. Functional analysis in vitro and in vivo of Mycobacterium bovis strain BCG-specific T cell clones. J Immunol. 1986 Mar 1;136(5):1828–1834. [PubMed] [Google Scholar]
  30. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976 Jul;25(1):129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  31. Rose M. L., Birbeck M. S., Wallis V. J., Forrester J. A., Davies A. J. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature. 1980 Mar 27;284(5754):364–366. doi: 10.1038/284364a0. [DOI] [PubMed] [Google Scholar]
  32. Rose M. L., Malchiodi F. Binding of peanut lectin to thymic cortex and germinal centres of lymphoid tissue. Immunology. 1981 Apr;42(4):583–591. [PMC free article] [PubMed] [Google Scholar]
  33. Roth J., Lentze M. J., Berger E. G. Immunocytochemical demonstration of ecto-galactosyltransferase in absorptive intestinal cells. J Cell Biol. 1985 Jan;100(1):118–125. doi: 10.1083/jcb.100.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spooncer E., Fukuda M., Klock J. C., Oates J. E., Dell A. Isolation and characterization of polyfucosylated lactosaminoglycan from human granulocytes. J Biol Chem. 1984 Apr 25;259(8):4792–4801. [PubMed] [Google Scholar]
  35. Tollefsen S. E., Kornfeld R. Isolation and characterization of lectins from Vicia villosa. Two distinct carbohydrate binding activities are present in seed extracts. J Biol Chem. 1983 Apr 25;258(8):5165–5171. [PubMed] [Google Scholar]
  36. Tollefsen S. E., Kornfeld R. The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem. 1983 Apr 25;258(8):5172–5176. [PubMed] [Google Scholar]
  37. von Boehmer H., Hengartner H., Nabholz M., Lernhardt W., Schreier M. H., Haas W. Fine specificity of a continuously growing killer cell clone specific for H-Y antigen. Eur J Immunol. 1979 Aug;9(8):592–597. doi: 10.1002/eji.1830090804. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES