Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Apr 1;243(1):113–120. doi: 10.1042/bj2430113

Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones.

M G Giovannini, L Poulter, B W Gibson, D H Williams
PMCID: PMC1147821  PMID: 3606567

Abstract

Peptides present in the skin secretion of the South African frog, Xenopus laevis, have been analysed by fast atom bombardment mass spectrometry and h.p.l.c. in the mass range 500-3200 Da. We have investigated the effects of successive glandular secretions induced by noradrenaline injections on these peptide levels and have found that the replenishment of the whole range of peptides is complete within 2-6 days. Intact secretory vesicles free of cellular contaminants contain a relatively large number of peptides with molecular masses in the range 2400-2700 Da. We have termed these peptides primary products or spacer peptides, since they originate from spacer regions of the precursors to xenopsin and caerulein. However, if the secretory vesicles are disrupted during the collection procedure and the solution containing the secretion is kept at room temperature for up to 2 h, relatively little of the larger peptides remain. By comparing the relative levels of the various peptides present in these secretions we have found that the larger peptides are proteolytically cleaved into smaller fragments by a novel cleavage at the N-terminal side of a lysine residue (at Xaa-Lys bonds where Xaa is Leu, Gly, Ala or Lys). Preliminary evidence has been obtained suggesting that the larger intact peptides possess lytic activity whereas the smaller proteolytic fragments appear relatively inactive. This may represent a mechanism by which the secretions are rendered harmless to the frog itself, since prolonged exposure would be expected to result in toxic effects. The dorsal glands of X. laevis thus appear similar to endocrine glands, since they are involved in peptide biosynthesis, secretion and subsequent proteolytic degradation.

Full text

PDF
117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Bertaccini G., Cei J. M., De Caro G., Erspamer V., Impicciatore M., Roseghini M. Presence of caerulein in extracts of the skin of Leptodactylus pentadactylus labyrinthicus and of Xenopus laevis. Br J Pharmacol. 1970 Jan;38(1):221–228. doi: 10.1111/j.1476-5381.1970.tb10351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreu D., Aschauer H., Kreil G., Merrifield R. B. Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa-(4-24)] from skin secretion of Xenopus laevis. Eur J Biochem. 1985 Jun 18;149(3):531–535. doi: 10.1111/j.1432-1033.1985.tb08957.x. [DOI] [PubMed] [Google Scholar]
  3. Araki K., Tachibana S., Uchiyama M., Nakajima T., Yasuhara T. Isolation and structure of a new active peptide "Xenopsin" on the smooth muscle, especially on a strip of fundus from a rat stomach, from the skin of Xenopus laevis. Chem Pharm Bull (Tokyo) 1973 Dec;21(12):2801–2804. doi: 10.1248/cpb.21.2801. [DOI] [PubMed] [Google Scholar]
  4. Argiolas A., Pisano J. J. Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem. 1985 Feb 10;260(3):1437–1444. [PubMed] [Google Scholar]
  5. Argiolas A., Pisano J. J. Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J Biol Chem. 1984 Aug 25;259(16):10106–10111. [PubMed] [Google Scholar]
  6. Bennett G. W., Balls M., Clothier R. H., Marsden C. A., Robinson G., Wemyss-Holden G. D. Location and release of TRH and 5-HT from amphibian skin. Cell Biol Int Rep. 1981 Feb;5(2):151–158. doi: 10.1016/0309-1651(81)90023-0. [DOI] [PubMed] [Google Scholar]
  7. Carraway R., Ruane S. E., Feurle G. E., Taylor S. Amphibian neurotensin (NT) is not xenopsin (XP): dual presence of NT-like and XP-like peptides in various amphibia. Endocrinology. 1982 Apr;110(4):1094–1101. doi: 10.1210/endo-110-4-1094. [DOI] [PubMed] [Google Scholar]
  8. Csordás A., Michl H. Primary structure of two oligopeptides of the toxin of Bombina variegata L. Toxicon. 1969 Sep;7(2):103–108. doi: 10.1016/0041-0101(69)90072-5. [DOI] [PubMed] [Google Scholar]
  9. Dimaline R. Is caerulein amphibian CCK? Peptides. 1983 Jul-Aug;4(4):457–462. doi: 10.1016/0196-9781(83)90049-9. [DOI] [PubMed] [Google Scholar]
  10. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  11. Dockray G. J., Hopkins C. R. Caerulein secretion by dermal glands in Xenopus laevis. J Cell Biol. 1975 Mar;64(3):724–733. doi: 10.1083/jcb.64.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibson B. W., Poulter L., Williams D. H., Maggio J. E. Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem. 1986 Apr 25;261(12):5341–5349. [PubMed] [Google Scholar]
  13. Gubler U., Seeburg P., Hoffman B. J., Gage L. P., Udenfriend S. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature. 1982 Jan 21;295(5846):206–208. doi: 10.1038/295206a0. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann W., Richter K., Kreil G. A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. EMBO J. 1983;2(5):711–714. doi: 10.1002/j.1460-2075.1983.tb01489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson I. M., Reichlin S. Thyrotropin-releasing hormone in the blood of the frog, Rana pipiens: its nature and possible derivation from regional locations in the skin. Endocrinology. 1979 Jun;104(6):1814–1821. doi: 10.1210/endo-104-6-1814. [DOI] [PubMed] [Google Scholar]
  16. Kaiser E. T., Kézdy F. J. Secondary structures of proteins and peptides in amphiphilic environments. (A review). Proc Natl Acad Sci U S A. 1983 Feb;80(4):1137–1143. doi: 10.1073/pnas.80.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature. 1982 Jul 15;298(5871):245–249. doi: 10.1038/298245a0. [DOI] [PubMed] [Google Scholar]
  18. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Land H., Schütz G., Schmale H., Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature. 1982 Jan 28;295(5847):299–303. doi: 10.1038/295299a0. [DOI] [PubMed] [Google Scholar]
  21. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  22. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature. 1982 Jan 21;295(5846):202–206. doi: 10.1038/295202a0. [DOI] [PubMed] [Google Scholar]
  23. Richter K., Kawashima E., Egger R., Kreil G. Biosynthesis of thyrotropin releasing hormone in the skin of Xenopus laevis: partial sequence of the precursor deduced from cloned cDNA. EMBO J. 1984 Mar;3(3):617–621. doi: 10.1002/j.1460-2075.1984.tb01857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scheller R. H., Jackson J. F., McAllister L. B., Rothman B. S., Mayeri E., Axel R. A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell. 1983 Jan;32(1):7–22. doi: 10.1016/0092-8674(83)90492-0. [DOI] [PubMed] [Google Scholar]
  25. Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sures I., Crippa M. Xenopsin: the neurotensin-like octapeptide from Xenopus skin at the carboxyl terminus of its precursor. Proc Natl Acad Sci U S A. 1984 Jan;81(2):380–384. doi: 10.1073/pnas.81.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  28. Wingard M., Matsueda G., Wolfe R. S. Myxobacter AL-1 protease II: specific peptide bond cleavage on the amino side of lysine. J Bacteriol. 1972 Nov;112(2):940–949. doi: 10.1128/jb.112.2.940-949.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES