Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Apr 15;243(2):611–615. doi: 10.1042/bj2430611

Tyrosine and tyrosinate fluorescence of pig intestinal Ca2+-binding protein.

J D O'Neil, T Hofmann
PMCID: PMC1147898  PMID: 3632639

Abstract

The single tyrosine residue in both pig and cow intestinal Ca2+-binding proteins fluoresces at 303 nm although the crystal structure of the cow protein shows a hydrogen bond between the hydroxy group of the tyrosine and glutamate-38 [Szebenyi & Moffat (1986) J. Biol. Chem. 261, 8761-8777]. The latter interaction suggests that tyrosinate fluorescence should dominate the emission spectra of these proteins. A fluorescence difference spectrum, produced by subtracting the spectrum of free tyrosine from the spectrum of the protein, gives a peak at 334 nm due to ionized tyrosine. That this component of the emission spectrum is not due to a tryptophan-containing contaminant is shown by its elimination when the protein is denatured by guanidine and when glutamate-38 is protonated. We conclude that, in solution, the tyrosine residue in this protein interacts occasionally with glutamate-38 but that a permanent hydrogen bond is not formed.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  2. Barker W. C., Dayhoff M. O. Evolution of homologous physiological mechanisms based on protein sequence data. Comp Biochem Physiol B. 1979;62(1):1–5. doi: 10.1016/0305-0491(79)90002-6. [DOI] [PubMed] [Google Scholar]
  3. CORNOG J. L., Jr, ADAMS W. R. The fluorescence of tyrosine in alkaline solution. Biochim Biophys Acta. 1963 May 21;66:356–365. doi: 10.1016/0006-3002(63)91204-6. [DOI] [PubMed] [Google Scholar]
  4. Cheung W. Y. Calmodulin. Sci Am. 1982 Jun;246(6):62–70. doi: 10.1038/scientificamerican0682-62. [DOI] [PubMed] [Google Scholar]
  5. Cowgill R. W. Fluorescence and protein structure. XIV. Tyrosine fluorescence in helical muscle proteins. Biochim Biophys Acta. 1968 Dec 3;168(3):417–430. doi: 10.1016/0005-2795(68)90175-x. [DOI] [PubMed] [Google Scholar]
  6. DeLuca H. F., Schnoes H. K. Vitamin D: recent advances. Annu Rev Biochem. 1983;52:411–439. doi: 10.1146/annurev.bi.52.070183.002211. [DOI] [PubMed] [Google Scholar]
  7. Donovan J. W. Spectrophotometric titration of the functional groups of proteins. Methods Enzymol. 1973;27:525–548. doi: 10.1016/s0076-6879(73)27025-8. [DOI] [PubMed] [Google Scholar]
  8. Dorrington K. J., Hui A., Hofmann T., Hitchman A. J., Harrison J. E. Porcine intestinal calcium-binding protein. Molecular properties and the effect of binding calcium ions. J Biol Chem. 1974 Jan 10;249(1):199–204. [PubMed] [Google Scholar]
  9. Dorrington K. J., Kells D. I., Hitchman A. J., Hartison J. E., Hofmann T. Spectroscopic studies on the binding of divalent cations to porcine intestinal calcium-binding protein. Can J Biochem. 1978 Jun;56(6):492–499. doi: 10.1139/o78-076. [DOI] [PubMed] [Google Scholar]
  10. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  11. Fullmer C. S., Wasserman R. H. The amino acid sequence of bovine intestinal calcium-binding protein. J Biol Chem. 1981 Jun 10;256(11):5669–5674. [PubMed] [Google Scholar]
  12. Giancotti V., Quadrifoglio F., Cowgill R. W., Crane-Robinson C. Fluorescence of buried tyrosine residues in proteins. Biochim Biophys Acta. 1980 Jul 24;624(1):60–65. doi: 10.1016/0005-2795(80)90225-1. [DOI] [PubMed] [Google Scholar]
  13. Graziani M. T., Agrò A. F., Rotilio G., Barra D., Mondovi B. Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment. Biochemistry. 1974 Feb 12;13(4):804–809. doi: 10.1021/bi00701a025. [DOI] [PubMed] [Google Scholar]
  14. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  15. Hitchman A. J., Kerr M. K., Harrison J. E. The purification of pig vitamin D-induced intestinal calcium binding protein. Arch Biochem Biophys. 1973 Mar;155(1):221–222. doi: 10.1016/s0003-9861(73)80024-4. [DOI] [PubMed] [Google Scholar]
  16. Hofmann T., Kawakami M., Hitchman A. J., Harrison J. E., Dorrington K. J. The amino acid sequence of porcine intestinal calcium-binding protein. Can J Biochem. 1979 Jun;57(6):737–748. doi: 10.1139/o79-092. [DOI] [PubMed] [Google Scholar]
  17. Jordano J., Barbero J. L., Montero F., Franco L. Fluorescence of histones H1. A tyrosinate-like fluorescence emission in Ceratitis capitata H1 at neutral pH values. J Biol Chem. 1983 Jan 10;258(1):315–320. [PubMed] [Google Scholar]
  18. Kretsinger R. H. Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. Nat New Biol. 1972 Nov 15;240(98):85–88. doi: 10.1038/newbio240085a0. [DOI] [PubMed] [Google Scholar]
  19. Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
  20. Lim B. T., Kimura T. Conformation-associated anomalous tyrosine fluorescence of adrenodoxin. J Biol Chem. 1980 Mar 25;255(6):2440–2444. [PubMed] [Google Scholar]
  21. Longworth J. W. A new component in protein fluorescence. Ann N Y Acad Sci. 1981;366:237–245. doi: 10.1111/j.1749-6632.1981.tb20757.x. [DOI] [PubMed] [Google Scholar]
  22. MacManus J. P., Szabo A. G., Williams R. E. Conformational changes induced by binding of bivalent cations to oncomodulin, a paravalbumin-like tumour protein. Biochem J. 1984 May 15;220(1):261–268. doi: 10.1042/bj2200261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mani R. S., Boyes B. E., Kay C. M. Physicochemical and optical studies on calcium- and potassium-induced conformational changes in bovine brain S-100b protein. Biochemistry. 1982 May 25;21(11):2607–2612. doi: 10.1021/bi00540a005. [DOI] [PubMed] [Google Scholar]
  24. Moews P. C., Kretsinger R. H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol. 1975 Jan 15;91(2):201–225. doi: 10.1016/0022-2836(75)90160-6. [DOI] [PubMed] [Google Scholar]
  25. O'Neil J. D., Dorrington K. J., Hofmann T. Luminescence and circular-dichroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000). Can J Biochem Cell Biol. 1984 Jun;62(6):434–442. doi: 10.1139/o84-059. [DOI] [PubMed] [Google Scholar]
  26. O'Neil J. D., Dorrington K. J., Kells D. I., Hofmann T. Fluorescence and circular-dichroism properties of pig intestinal calcium-binding protein (Mr=9000), a protein with a single tyrosine residue. Biochem J. 1982 Dec 1;207(3):389–396. doi: 10.1042/bj2070389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shelling J. G., Sykes B. D. 1H nuclear magnetic resonance study of the two calcium-binding sites of porcine intestinal calcium-binding protein. J Biol Chem. 1985 Jul 15;260(14):8342–8347. [PubMed] [Google Scholar]
  28. Shelling J. G., Sykes B. D., O'Neil J. D., Hofmann T. Proton nuclear magnetic resonance studies of porcine intestinal calcium binding protein. Biochemistry. 1983 May 24;22(11):2649–2654. doi: 10.1021/bi00280a009. [DOI] [PubMed] [Google Scholar]
  29. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  30. Szabo A. G., Lynn K. R., Krajcarski D. T., Rayner D. M. Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7. FEBS Lett. 1978 Oct 15;94(2):249–252. doi: 10.1016/0014-5793(78)80948-x. [DOI] [PubMed] [Google Scholar]
  31. Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
  32. Szebenyi D. M., Obendorf S. K., Moffat K. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature. 1981 Nov 26;294(5839):327–332. doi: 10.1038/294327a0. [DOI] [PubMed] [Google Scholar]
  33. Vogel H. J., Drakenberg T., Forsén S., O'Neil J. D., Hofmann T. Structural differences in the two calcium binding sites of the porcine intestinal calcium binding protein: a multinuclear NMR study. Biochemistry. 1985 Jul 16;24(15):3870–3876. doi: 10.1021/bi00336a009. [DOI] [PubMed] [Google Scholar]
  34. WEBER G., ROSENHECK K. PROTON-TRANSFER EFFECTS IN THE QUENCHING OF FLUORESCENCE OF TYROSINE COPOLYMERS. Biopolym Symp. 1964;13:333–341. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES