Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 May 1;243(3):853–857. doi: 10.1042/bj2430853

Role of NADP+ (corrected)-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart.

K E Sundqvist 1, J Heikkilä 1, I E Hassinen 1, J K Hiltunen 1
PMCID: PMC1147935  PMID: 3663104

Abstract

Cytosolic and mitochondrial concentrations of malate, 2-oxoglutarate, isocitrate and pyruvate in the isolated perfused rat heart were measured by non-aqueous tissue fractionation, taking the NADP-linked isocitrate dehydrogenase as indicator reactions for the free [NADPH]/[NADP+] ratios. The mass-action ratios of NADP-linked malic enzymes (EC 1.1.1.40) were found to be on the side of pyruvate carboxylation by more than one order of magnitude in both the cytosolic and the mitochondrial spaces in hearts perfused with glucose, whereas during propionate perfusion this ratio approached the equilibrium constant (Keq.) of malic enzyme. The results consequently indicate that the NADP-linked malic enzymes cannot be responsible for the feed-out (cataplerotic) reactions from the tricarboxylic acid cycle which occur during glucose perfusion. Only when other anaplerotic fluxes into the cycle are high, as during propionate oxidation, which results in accumulation of tricarboxylic acid-cycle intermediates, is a steady state reached which allows efflux via the malic enzyme.

Full text

PDF
853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brdiczka D., Pette D. Intra- and extramitochondrial isozymes of (NADP) malate dehydrogenase. Eur J Biochem. 1971 Apr 30;19(4):546–551. doi: 10.1111/j.1432-1033.1971.tb01347.x. [DOI] [PubMed] [Google Scholar]
  2. Bremer J., Davis E. J. Citrate as a regulator of acetyl-CoA metabolism in liver mitochondria. Biochim Biophys Acta. 1974 Dec 29;370(2):564–572. doi: 10.1016/0005-2744(74)90118-1. [DOI] [PubMed] [Google Scholar]
  3. Connett R. J. Glyconeogenesis from lactate in frog striated muscle. Am J Physiol. 1979 Nov;237(5):C231–C236. doi: 10.1152/ajpcell.1979.237.5.C231. [DOI] [PubMed] [Google Scholar]
  4. DAVIS E. J., QUASTEL J. H. THE EFFECTS OF SHORT-CHAIN FATTY ACIDS AND STARVATION ON THE METABOLISM OF GLUCOSE AND LACTATE BY THE PERFUSED GUINEA PIG HEART. Can J Biochem. 1964 Nov;42:1605–1621. doi: 10.1139/o64-172. [DOI] [PubMed] [Google Scholar]
  5. Davis E. J., Bremer J. Studies with isolated surviving rat hearts. Interdependence of free amino acids and citric-acid-cycle intermediates. Eur J Biochem. 1973 Sep 21;38(1):86–97. doi: 10.1111/j.1432-1033.1973.tb03037.x. [DOI] [PubMed] [Google Scholar]
  6. Davis E. J., Spydevold O., Bremer J. Pyruvate carboxylase and propionyl-CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. Eur J Biochem. 1980 Sep;110(1):255–262. doi: 10.1111/j.1432-1033.1980.tb04863.x. [DOI] [PubMed] [Google Scholar]
  7. Davisson V. J., Schulz A. R. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme. Biochem J. 1985 Jan 15;225(2):335–342. doi: 10.1042/bj2250335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dynnik V. V., Maevskii E. I., Grigorenko E. V., Kim Iu V. Substratnoe ugnetenie v tsikle trikarbonovykh kislot. Biofizika. 1984 Nov-Dec;29(6):954–958. [PubMed] [Google Scholar]
  9. Elbers R., Heldt H. W., Schmucker P., Soboll S., Wiese H. Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):378–393. doi: 10.1515/bchm2.1974.355.1.378. [DOI] [PubMed] [Google Scholar]
  10. GARLAND P. B., RANDLE P. J., NEWSHOLME E. A. CITRATE AS AN INTERMEDIARY IN THE INHIBITION OF PHOSPHOFRUCTOKINASE IN RAT HEART MUSCLE BY FATTY ACIDS, KETONE BODIES, PYRUVATE, DIABETES, AND STARVATION. Nature. 1963 Oct 12;200:169–170. doi: 10.1038/200169a0. [DOI] [PubMed] [Google Scholar]
  11. GOEBELL H., KLINGENBERG M. DPN-SPEZIFISCHE ISOCITRAT-DEHYDROGENASE DER MITOCHONDRIEN. I. KINETISCHE EIGENSSCHAFTEN, VORKOMMEN UND FUNKTION DER DPN-SPEZIFISCHEN ISOCITRAT-DEHYDROGENASE. Biochem Z. 1964 Sep 28;340:441–464. [PubMed] [Google Scholar]
  12. Garland P. B., Randle P. J. Regulation of glucose uptake by muscles. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, and of fatty acids, ketone bodies and pyruvate, on the glycerol output and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):678–687. doi: 10.1042/bj0930678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansford R. G., Johnson R. N. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J Biol Chem. 1975 Nov 10;250(21):8361–8375. [PubMed] [Google Scholar]
  14. Hiltunen J. K., Davis E. J. The disposition of citric acid cycle intermediates by isolated rat heart mitochondria. Biochim Biophys Acta. 1981 Nov 18;678(1):115–121. doi: 10.1016/0304-4165(81)90054-4. [DOI] [PubMed] [Google Scholar]
  15. Kato T., Berger S. J., Carter J. A., Lowry O. H. An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases. Anal Biochem. 1973 May;53(1):86–97. doi: 10.1016/0003-2697(73)90409-0. [DOI] [PubMed] [Google Scholar]
  16. Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Biochim Biophys Acta. 1982 Aug 20;681(2):286–291. doi: 10.1016/0005-2728(82)90033-0. [DOI] [PubMed] [Google Scholar]
  17. Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart. Biochim Biophys Acta. 1983 Dec 30;725(3):425–433. doi: 10.1016/0005-2728(83)90183-4. [DOI] [PubMed] [Google Scholar]
  18. Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Subcellular distribution of phosphagens in isolated perfused rat heart. FEBS Lett. 1980 Apr 7;112(2):273–276. doi: 10.1016/0014-5793(80)80196-7. [DOI] [PubMed] [Google Scholar]
  19. Kauppinen R. Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes. Biochim Biophys Acta. 1983 Oct 31;725(1):131–137. doi: 10.1016/0005-2728(83)90232-3. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., PASSONNEAU J. V., SCHULZ D. W., ROCK M. K. The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem. 1961 Oct;236:2746–2755. [PubMed] [Google Scholar]
  21. LaNoue K. F., Bryla J., Williamson J. R. Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. J Biol Chem. 1972 Feb 10;247(3):667–679. [PubMed] [Google Scholar]
  22. Lee S. H., Davis E. J. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):420–430. [PubMed] [Google Scholar]
  23. Lin R. C., Davis E. J. Malic enzymes of rabbit heart mitochondria. Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme. J Biol Chem. 1974 Jun 25;249(12):3867–3875. [PubMed] [Google Scholar]
  24. Nagel W. O., Dauchy R. T., Sauer L. A. Mitochondrial malic enzymes. An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues. J Biol Chem. 1980 May 10;255(9):3849–3854. [PubMed] [Google Scholar]
  25. Nuutinen E. M., Peuhkurinen K. J., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J. 1981 Mar 15;194(3):867–875. doi: 10.1042/bj1940867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Palmer T. N., Caldecourt M. A., Warner J. P., Sugden M. C. The role of phosphoenolpyruvate carboxykinase in muscle alanine synthesis. Biochem J. 1984 Dec 15;224(3):971–976. doi: 10.1042/bj2240971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peuhkurinen K. J., Hassinen I. E. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J. 1982 Jan 15;202(1):67–76. doi: 10.1042/bj2020067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peuhkurinen K. J., Hiltunen J. K., Hassinen I. E. Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J. 1983 Jan 15;210(1):193–198. doi: 10.1042/bj2100193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peuhkurinen K. J., Nuutinen E. M., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Biochem J. 1982 Dec 15;208(3):577–581. doi: 10.1042/bj2080577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peuhkurinen K. J. Regulation of the tricarboxylic acid cycle pool size in heart muscle. J Mol Cell Cardiol. 1984 Jun;16(6):487–495. doi: 10.1016/s0022-2828(84)80637-9. [DOI] [PubMed] [Google Scholar]
  31. Randle P. J., England P. J., Denton R. M. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J. 1970 May;117(4):677–695. doi: 10.1042/bj1170677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rydström J. Energy-linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta. 1977 Oct 5;463(2):155–184. doi: 10.1016/0304-4173(77)90007-6. [DOI] [PubMed] [Google Scholar]
  33. Safer B., Williamson J. R. Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates. J Biol Chem. 1973 Apr 10;248(7):2570–2579. [PubMed] [Google Scholar]
  34. Snell K., Duff D. A. The release of alanine by rat diaphragm muscle in vitro. Biochem J. 1977 Feb 15;162(2):399–403. doi: 10.1042/bj1620399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takala T., Hiltunen J. K., Hassinen I. E. The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart. Biochem J. 1980 Oct 15;192(1):285–295. doi: 10.1042/bj1920285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  37. Wojtczak A. B., Walajtys E. Mitochondrial oxaloacetate decarboxylase from rat liver. Biochim Biophys Acta. 1974 May 22;347(2):168–182. doi: 10.1016/0005-2728(74)90042-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES