Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jun 1;244(2):409–415. doi: 10.1042/bj2440409

Phosphatidylcholine metabolism in neonatal mouse calvaria.

P H Stern 1, D E Vance 1
PMCID: PMC1148006  PMID: 3663134

Abstract

Phosphatidylcholine metabolism was examined in neonatal mouse calvaria in vitro. Incorporation of choline into phosphatidylcholine was slow in this tissue. At 2 h after a pulse of [methyl-3H]choline only 30% of the tissue radioactivity was in the organic phase. Chromatography of the aqueous phase of the tissue extract revealed that more than half of the radioactivity was present as choline at this time. There was no accumulation of phosphocholine, which would have been expected if the cytidylyltransferase were the rate-limiting step in the CDP-choline pathway in the tissue. Choline kinase activity in calvarial cytosol was lower than choline kinase activity in liver cytosol of the same animals. No evidence for significant phosphatidylcholine synthesis through the methylation pathway was found in the calvarial tissue. Although rates of choline-phosphatidylcholine base exchange were higher in bone microsomes than in microsomes from liver, the rate of phosphatidylcholine production through this pathway appeared to be too slow to account for the phosphatidylcholine produced by the calvaria. Phosphatidylcholine synthesis in the calvaria was unaffected by 2 h of treatment with 10 nM-parathyroid hormone, 0.1 nM-0.1 microM-1 alpha,25-dihydroxycholecalciferol, 5 microM-prostaglandin E1 or 2.5 nM-salmon calcitonin, or by 17 h of treatment with 10 nM-parathyroid hormone or 0.1 nM-1 alpha,25-dihydroxycholecalciferol.

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidot-López P., Farese R. V., Sabir M. A. Parathyroid hormone and adenosine-3',5'-monophosphate acutely increase phospholipids of the phosphatidate-polyphosphoinositide pathway in rabbit kidney cortex tubules in vitro by a cycloheximide-sensitive process. Endocrinology. 1981 Jun;108(6):2078–2081. doi: 10.1210/endo-108-6-2078. [DOI] [PubMed] [Google Scholar]
  2. Boskey A. L. Current concepts of the physiology and biochemistry of calcification. Clin Orthop Relat Res. 1981 Jun;(157):225–257. [PubMed] [Google Scholar]
  3. Boskey A. L., Timchak D. M. Phospholipid changes in the bones of the vitamin D-deficient, phosphate-deficient, immature rat. Metab Bone Dis Relat Res. 1983;5(2):81–85. doi: 10.1016/0221-8747(83)90006-1. [DOI] [PubMed] [Google Scholar]
  4. Cruess R. L., Hong K. C., Nakamura F. The effect of parathyroid hormone upon release of degradative enzymes from rat bone. Proc Soc Exp Biol Med. 1979 Oct;162(1):183–186. doi: 10.3181/00379727-162-40642. [DOI] [PubMed] [Google Scholar]
  5. Dirksen T. R. In vitro bone lipid synthesis in air and nitrogen. Biochim Biophys Acta. 1971 May 4;231(3):458–464. doi: 10.1016/0005-2760(71)90113-5. [DOI] [PubMed] [Google Scholar]
  6. Dirksen T. R., Marinetti G. V., Peck W. A. Lipid metabolism in bone and bone cells. I. The in vitro incorporation of [14C] glycerol and [14C] glucose into lipids of bone and bone cell cultures. Biochim Biophys Acta. 1970 Feb 10;202(1):67–79. doi: 10.1016/0005-2760(70)90219-5. [DOI] [PubMed] [Google Scholar]
  7. Dirksen T. R., Marinetti G. V., Peck W. A. Lipid metabolism in bone and bone cells. II. The in vitro incorporation of [32P] orthophosphate and [14C] serine into lipids of bone and bone cell cultures. Biochim Biophys Acta. 1970 Feb 10;202(1):80–90. doi: 10.1016/0005-2760(70)90220-1. [DOI] [PubMed] [Google Scholar]
  8. Dirksen T. R. The in vitro incorporation of acetate-14C into the lipids of new born rat calvaria. Arch Biochem Biophys. 1969 Nov;134(2):603–609. doi: 10.1016/0003-9861(69)90323-3. [DOI] [PubMed] [Google Scholar]
  9. Elgavish A., Rifkind J., Sacktor B. In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes. J Membr Biol. 1983;72(1-2):85–91. doi: 10.1007/BF01870316. [DOI] [PubMed] [Google Scholar]
  10. Farese R. V., Bidot-López P., Sabir A., Smith J. S., Schinbeckler B., Larson R. Parathyroid hormone acutely increases polyphosphoinositides of the rabbit kidney cortex by a cycloheximide-sensitive process. J Clin Invest. 1980 Jun;65(6):1523–1526. doi: 10.1172/JCI109818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lo H., Lehotay D. C., Katz D., Levey G. S. Parathyroid hormone-mediated incorporation of 32P-orthophosphate into phosphatidic acid and phosphatidylinositol in renal cortical slices. Endocr Res Commun. 1976;3(6):377–385. doi: 10.3109/07435807609073911. [DOI] [PubMed] [Google Scholar]
  12. Matsumoto T., Fontaine O., Rasmussen H. Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in chick duodenal mucosal cell. Relationship to its mechanism of action. J Biol Chem. 1981 Apr 10;256(7):3354–3360. [PubMed] [Google Scholar]
  13. Matsumoto T., Kawanobe Y., Morita K., Ogata E. Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line. J Biol Chem. 1985 Nov 5;260(25):13704–13709. [PubMed] [Google Scholar]
  14. Max E. E., Goodman D. B., Rasmussen H. Purification and characterization of chick intestine brush border membrane. Effects of 1alpha(OH) vitamin D3 treatment. Biochim Biophys Acta. 1978 Aug 4;511(2):224–239. doi: 10.1016/0005-2736(78)90316-4. [DOI] [PubMed] [Google Scholar]
  15. Meltzer V., Weinreb S., Bellorin-Font E., Hruska K. A. Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide-independent effect. Biochim Biophys Acta. 1982 Aug 18;712(2):258–267. doi: 10.1016/0005-2760(82)90342-3. [DOI] [PubMed] [Google Scholar]
  16. O'Doherty P. J. 1,25-Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation-reacylation cycle. Lipids. 1979 Jan;14(1):75–77. doi: 10.1007/BF02533571. [DOI] [PubMed] [Google Scholar]
  17. Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
  18. Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem J. 1981 Apr 15;196(1):261–267. doi: 10.1042/bj1960261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rappaport M. S., Stern P. H. Parathyroid hormone and calcitonin modify inositol phospholipid metabolism in fetal rat limb bones. J Bone Miner Res. 1986 Apr;1(2):173–179. doi: 10.1002/jbmr.5650010202. [DOI] [PubMed] [Google Scholar]
  20. Saito M., Bourque E., Kanfer J. Studies on base-exchange reactions of phospholipids in rat brain particles and a "solubilized" system. Arch Biochem Biophys. 1975 Jul;169(1):304–317. doi: 10.1016/0003-9861(75)90345-8. [DOI] [PubMed] [Google Scholar]
  21. Weinhold P. A., Rethy V. B. The separation, purification, and characterization of ethanolamine kinase and choline kinase from rat liver. Biochemistry. 1974 Dec 3;13(25):5135–5141. doi: 10.1021/bi00722a013. [DOI] [PubMed] [Google Scholar]
  22. Wuthier R. E. Lipids of mineralizing epiphyseal tissues in the bovine fetus. J Lipid Res. 1968 Jan;9(1):68–78. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES