Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Aug 1;245(3):915–918. doi: 10.1042/bj2450915

Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria.

M Crompton 1, A Costi 1, L Hayat 1
PMCID: PMC1148218  PMID: 3117053

Abstract

Rat heart mitochondria became permeabilized to sucrose when incubated with 100 nmol of Ca2+/mg of protein in the presence of Pi. Ca2+ chelation with EGTA restored impermeability to sucrose, which became entrapped in the matrix space. t-Butylhydroperoxide markedly promoted permeabilization in the presence of Ca2+ but not in its absence, and Ca2+-plus-t-butylhydroperoxide-induced permeabilization was reversed by EGTA. The data suggest that Ca2+ and oxidative stress synergistically promote the reversible opening of an inner membrane pore.

Full text

PDF
917

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broekemeier K. M., Schmid P. C., Schmid H. H., Pfeiffer D. R. Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. J Biol Chem. 1985 Jan 10;260(1):105–113. [PubMed] [Google Scholar]
  2. Crompton M., Kessar P., Al-Nasser I. The alpha-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo. Biochem J. 1983 Nov 15;216(2):333–342. doi: 10.1042/bj2160333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ferrari R., di Lisa F., Raddino R., Visioli O. The effects of ruthenium red on mitochondrial function during post-ischaemic reperfusion. J Mol Cell Cardiol. 1982 Dec;14(12):737–740. doi: 10.1016/0022-2828(82)90186-9. [DOI] [PubMed] [Google Scholar]
  4. Guarnieri C., Flamigni F., Caldarera C. M. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol. 1980 Aug;12(8):797–808. doi: 10.1016/0022-2828(80)90081-4. [DOI] [PubMed] [Google Scholar]
  5. Halliwell B., Gutteridge J. M. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med. 1985;8(2):89–193. doi: 10.1016/0098-2997(85)90001-9. [DOI] [PubMed] [Google Scholar]
  6. Hayat L. H., Crompton M. The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na+-Ca2+ carrier to extramitochondrial Ca2+. A study using arsenazo III-loaded mitochondria. Biochem J. 1987 Jun 15;244(3):533–538. doi: 10.1042/bj2440533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henry P. D., Schuchleib R., Davis J., Weiss E. S., Sobel B. E. Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am J Physiol. 1977 Dec;233(6):H677–H684. doi: 10.1152/ajpheart.1977.233.6.H677. [DOI] [PubMed] [Google Scholar]
  8. McCormack J. G., Denton R. M. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochem J. 1984 Feb 15;218(1):235–247. doi: 10.1042/bj2180235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peng C. F., Kane J. J., Straub K. D., Murphy M. L. Improvement of mitochondrial energy production in ischemic myocardium by in vivo infusion of ruthenium red. J Cardiovasc Pharmacol. 1980 Jan-Feb;2(1):45–54. doi: 10.1097/00005344-198001000-00006. [DOI] [PubMed] [Google Scholar]
  10. Poole-Wilson P. A., Harding D. P., Bourdillon P. D., Tones M. A. Calcium out of control. J Mol Cell Cardiol. 1984 Feb;16(2):175–187. doi: 10.1016/s0022-2828(84)80706-3. [DOI] [PubMed] [Google Scholar]
  11. Rottenberg H. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol. 1984;81(2):127–138. doi: 10.1007/BF01868977. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES