Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Aug 15;246(1):213–219. doi: 10.1042/bj2460213

Participation of ATP in the binding of a yeast replicative complex to DNA.

S M Jazwinski 1
PMCID: PMC1148260  PMID: 3314864

Abstract

The activity that replicates yeast DNA in vitro can be isolated from cells of the budding yeast Saccharomyces in a high-Mr (approximately 2 X 10(6] form. Several lines of evidence indicate that this fraction contains a multiprotein replicative complex. A functional assay has been developed for the analysis of the interaction of the replicating activity with DNA. Binding of the activity required Mg2+, but did not require the addition of ATP or the other ribo- or deoxynucleoside triphosphates. However, the ATP analogues adenosine 5'-[gamma-thio]triphosphate and adenosine 5'-[beta gamma-imido]triphosphate blocked the binding, suggesting that ATP participates in the interaction at some stage. The binding was template (origin)-specific in either the presence or the absence of ATP and the other nucleoside triphosphates; however, ATP stabilized the replicating activity. The preferential inhibition of binding that was observed in the presence of the DNA topoisomerase II inhibitor coumermycin suggests that the requirement for ATP may be at least partially accounted for by the involvement of this enzyme in the initial interaction of the replicating activity with DNA. Finally, the binding was rapid. In contrast, DNA synthesis displayed a lag when assayed directly without first allowing a period for the replicating activity to bind to the DNA. In addition, binding was 'tight', as judged by the resistance of the protein--DNA complexes to salt in comparison with the relative sensitivity of binding. The replicating activity was not readily displaced from the complexes by exogenous DNAs, either possessing or lacking yeast origins of replication. The results suggest that the interaction of the replicating activity with the DNA occurs in more than one stage.

Full text

PDF
213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. A., Sekimizu K., Funnell B. E., Kornberg A. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell. 1986 Apr 11;45(1):53–64. doi: 10.1016/0092-8674(86)90537-4. [DOI] [PubMed] [Google Scholar]
  2. Banks G. R., Barker D. G. DNA ligase-AMP adducts: identification of yeast DNA ligase polypeptides. Biochim Biophys Acta. 1985 Dec 18;826(4):180–185. doi: 10.1016/0167-4781(85)90004-1. [DOI] [PubMed] [Google Scholar]
  3. Celniker S. E., Campbell J. L. Yeast DNA replication in vitro: initiation and elongation events mimic in vivo processes. Cell. 1982 Nov;31(1):201–213. doi: 10.1016/0092-8674(82)90420-2. [DOI] [PubMed] [Google Scholar]
  4. Decker R. S., Yamaguchi M., Possenti R., DePamphilis M. L. Initiation of simian virus 40 DNA replication in vitro: aphidicolin causes accumulation of early-replicating intermediates and allows determination of the initial direction of DNA synthesis. Mol Cell Biol. 1986 Nov;6(11):3815–3825. doi: 10.1128/mcb.6.11.3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diffley J. F., Stillman B. Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay. Mol Cell Biol. 1986 May;6(5):1363–1373. doi: 10.1128/mcb.6.5.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Durnford J. M., Champoux J. J. The DNA untwisting enzyme from Saccharomyces cerevisiae. Partial purification and characterization. J Biol Chem. 1978 Feb 25;253(4):1086–1089. [PubMed] [Google Scholar]
  7. Fangman W. L., Hice R. H., Chlebowicz-Sledziewska E. ARS replication during the yeast S phase. Cell. 1983 Mar;32(3):831–838. doi: 10.1016/0092-8674(83)90069-7. [DOI] [PubMed] [Google Scholar]
  8. Goto T., Wang J. C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J Biol Chem. 1982 May 25;257(10):5866–5872. [PubMed] [Google Scholar]
  9. Hsiao C. L., Carbon J. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3829–3833. doi: 10.1073/pnas.76.8.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jazwinski S. M., Edelman G. M. A DNA primase from yeast. Purification and partial characterization. J Biol Chem. 1985 Apr 25;260(8):4995–5002. [PubMed] [Google Scholar]
  11. Jazwinski S. M., Edelman G. M. Acitivity of yeast extracts in cell-free stimulation of DNA replication. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3933–3936. doi: 10.1073/pnas.73.11.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jazwinski S. M., Edelman G. M. Evidence for participation of a multiprotein complex in yeast DNA replication in vitro. J Biol Chem. 1984 Jun 10;259(11):6852–6857. [PubMed] [Google Scholar]
  13. Jazwinski S. M., Edelman G. M. Protein complexes from active replicative fractions associate in vitro with the replication origins of yeast 2-micrometers DNA plasmid. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3428–3432. doi: 10.1073/pnas.79.11.3428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jazwinski S. M., Edelman G. M. Replication in vitro of the 2-micrometer DNA plasmid of yeast. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1223–1227. doi: 10.1073/pnas.76.3.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jazwinski S. M., Niedzwiecka A., Edelman G. M. In vitro association of a replication complex with a yeast chromosomal replicator. J Biol Chem. 1983 Mar 10;258(5):2754–2757. [PubMed] [Google Scholar]
  16. Jazwinski S. M. Replication of the 2-micrometer DNA plasmid of yeast. Acta Biochim Pol. 1982;29(1-2):159–173. [PubMed] [Google Scholar]
  17. Johnson L. M., Snyder M., Chang L. M., Davis R. W., Campbell J. L. Isolation of the gene encoding yeast DNA polymerase I. Cell. 1985 Nov;43(1):369–377. doi: 10.1016/0092-8674(85)90042-x. [DOI] [PubMed] [Google Scholar]
  18. Jong A. Y., Scott J. F. DNA synthesis in yeast cell-free extracts dependent on recombinant DNA plasmids purified from Escherichia coli. Nucleic Acids Res. 1985 Apr 25;13(8):2943–2958. doi: 10.1093/nar/13.8.2943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kojo H., Greenberg B. D., Sugino A. Yeast 2-micrometer plasmid DNA replication in vitro: origin and direction. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7261–7265. doi: 10.1073/pnas.78.12.7261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LaBonne S. G., Dumas L. B. Isolation of a yeast single-strand deoxyribonucleic acid binding protein that specifically stimulates yeast DNA polymerase I. Biochemistry. 1983 Jun 21;22(13):3214–3219. doi: 10.1021/bi00282a027. [DOI] [PubMed] [Google Scholar]
  21. Noguchi H., Prem veer Reddy G., Pardee A. B. Rapid incorporation of label from ribonucleoside disphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei. Cell. 1983 Feb;32(2):443–451. doi: 10.1016/0092-8674(83)90464-6. [DOI] [PubMed] [Google Scholar]
  22. Plevani P., Badaracco G., Augl C., Chang L. M. DNA polymerase I and DNA primase complex in yeast. J Biol Chem. 1984 Jun 25;259(12):7532–7539. [PubMed] [Google Scholar]
  23. Singh H., Dumas L. B. A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae. J Biol Chem. 1984 Jun 25;259(12):7936–7940. [PubMed] [Google Scholar]
  24. Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sugino A., Ryu B. H., Sugino T., Naumovski L., Friedberg E. C. A new DNA-dependent ATPase which stimulates yeast DNA polymerase I and has DNA-unwinding activity. J Biol Chem. 1986 Sep 5;261(25):11744–11750. [PubMed] [Google Scholar]
  26. Taketo M., Jazwinski S. M., Edelman G. M. Association of the 2-micron DNA plasmid with yeast folded chromosomes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3144–3148. doi: 10.1073/pnas.77.6.3144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williamson D. H. The yeast ARS element, six years on: a progress report. Yeast. 1985 Sep;1(1):1–14. doi: 10.1002/yea.320010102. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES