Abstract
Lipid phosphorylation was shown to occur on the isolated sarcoplasmic-reticulum (SR) Ca2+-transport ATPase. More than 95% of the radioactivity incorporated on incubation of the SR ATPase with [gamma-32P]ATPMg can be extracted with acidic organic solvents and was identified as 1-(3-sn-phosphatidyl)-1D-myo-inositol 4-phosphate (PtdIns4P) [Varsányi, Toelle, Heilmeyer, Dawson & Irvine (1983) EMBO J. 2, 1543-1548]. This lipid phosphorylation is only observed at nanomolar concentrations of free Ca2+; in the presence of micromolar free Ca2+ PtdIns4P disintegrates rapidly. Also, upon blockade of the kinase reaction PtdIns4P decomposes, indicating a PtdIns/PtdIns4P turnover. The PtdIns4P concentration is dependent on the free Ca2+ concentration, being half-maximal at 35 nM-Ca2+. PtdIns4P hydrolysis is catalysed by a PtdIns4P phosphomonoesterase; accordingly no diacylglycerol is formed, which would be a product of a phosphodiesteratic cleavage. Fluoride inhibits this phosphomonoesterase. Ca2+ does not influence directly either the PtdIns kinase or the PtdIns4P phosphomonoesterase. PtdIns4P forms a tight complex with the transport ATPase, from which it can be removed only by chromatography on heparin-agarose in the presence of Triton X-100. It is concluded that Ca2+ regulates the PtdIns/PtdIns4P turnover by availability of substrate, depending on the Ca2+-transport-ATPase conformation, which traps or exposes the respective lipid head groups.
Full text
PDF![579](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/5973e971b4cd/biochemj00244-0089.png)
![580](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/af0440cdd942/biochemj00244-0090.png)
![581](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/cdd99a6219d5/biochemj00244-0091.png)
![582](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/0b578d8a45d2/biochemj00244-0092.png)
![583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/44e829b54753/biochemj00244-0093.png)
![584](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/436ac6082bd4/biochemj00244-0094.png)
![585](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/05327d081eb5/biochemj00244-0095.png)
![586](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/575cb72fc0f6/biochemj00244-0096.png)
![587](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435b/1148452/a843a51039f4/biochemj00244-0097.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Berridge M. J. Ernst Klenk Lecture, November 1985. Intracellular signalling through inositol trisphosphate and diacylglycerol. Biol Chem Hoppe Seyler. 1986 Jun;367(6):447–456. [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Choquette D., Hakim G., Filoteo A. G., Plishker G. A., Bostwick J. R., Penniston J. T. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun. 1984 Dec 28;125(3):908–915. doi: 10.1016/0006-291x(84)91369-x. [DOI] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Collins C. A., Wells W. W. Identification of phosphatidylinositol kinase in rat liver lysosomal membranes. J Biol Chem. 1983 Feb 25;258(4):2130–2134. [PubMed] [Google Scholar]
- De Meis L., Hasselbach W. Acetyl phosphate as substrate for Ca 2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions. J Biol Chem. 1971 Aug 10;246(15):4759–4763. [PubMed] [Google Scholar]
- Georgoussi Z., Evangelopoulos A., Heilmeyer L. M., Jr Labeling of sarcoplasmic reticulum peptides with 32P-phosphate and fluorescein 5'-isothiocyanate. Biochem Pharmacol. 1986 Dec 15;35(24):4571–4573. doi: 10.1016/0006-2952(86)90780-x. [DOI] [PubMed] [Google Scholar]
- Georgoussi Z., Heilmeyer L. M., Jr Evidence that phosphorylase kinase exhibits phosphatidylinositol kinase activity. Biochemistry. 1986 Jul 1;25(13):3867–3874. doi: 10.1021/bi00361a019. [DOI] [PubMed] [Google Scholar]
- Hessová Z., Thieleczek R., Varsányi M., Falkenberg F. W., Heilmeyer L. M., Jr Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase. Probes for studies of subunit function. J Biol Chem. 1985 Aug 25;260(18):10111–10117. [PubMed] [Google Scholar]
- Hidalgo C., Carrasco M. A., Magendzo K., Jaimovich E. Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling. FEBS Lett. 1986 Jun 23;202(1):69–73. doi: 10.1016/0014-5793(86)80651-2. [DOI] [PubMed] [Google Scholar]
- Jennissen H. P., Heilmeyer L. M., Jr General aspects of hydrophobic chromatography. Adsorption and elution characteristics of some skeletal muscle enzymes. Biochemistry. 1975 Feb 25;14(4):754–760. doi: 10.1021/bi00675a017. [DOI] [PubMed] [Google Scholar]
- Jergil B., Sundler R. Phosphorylation of phosphatidylinositol in rat liver Golgi. J Biol Chem. 1983 Jul 10;258(13):7968–7973. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaPorte D. C., Koshland D. E., Jr Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature. 1983 Sep 22;305(5932):286–290. doi: 10.1038/305286a0. [DOI] [PubMed] [Google Scholar]
- Lin S. H., Fain J. N. Ca2+-Mg2+-ATPase in rat hepatocyte plasma membranes: inhibition by vasopressin and purification of the enzyme. Prog Clin Biol Res. 1984;168:25–30. [PubMed] [Google Scholar]
- Lin S. H., Wallace M. A., Fain J. N. Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine. Endocrinology. 1983 Dec;113(6):2268–2275. doi: 10.1210/endo-113-6-2268. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970 Sep 10;245(17):4508–4518. [PubMed] [Google Scholar]
- Schacht J. Extraction and purification of polyphosphoinositides. Methods Enzymol. 1981;72:626–631. doi: 10.1016/s0076-6879(81)72054-8. [DOI] [PubMed] [Google Scholar]
- Sekar M. C., Hokin L. E. The role of phosphoinositides in signal transduction. J Membr Biol. 1986;89(3):193–210. doi: 10.1007/BF01870664. [DOI] [PubMed] [Google Scholar]
- Shaikh N. A., Palmer F. B. Phosphoinositide kinases in chick brain and sciatic nerve, a developmental study. J Neurochem. 1977 Feb;28(2):395–402. doi: 10.1111/j.1471-4159.1977.tb07760.x. [DOI] [PubMed] [Google Scholar]
- Smith C. D., Wells W. W. Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J Biol Chem. 1983 Aug 10;258(15):9368–9373. [PubMed] [Google Scholar]
- Varsanyi M., Tölle H. G., Heilmeyer M. G., Jr, Dawson R. M., Irvine R. F. Activation of sarcoplasmic reticular Ca2+ transport ATPase by phosphorylation of an associated phosphatidylinositol. EMBO J. 1983;2(9):1543–1548. doi: 10.1002/j.1460-2075.1983.tb01621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varsányi M., Behle G., Schäfer M. Stimulation of phosphatidylinositol phosphorylation in the sarcoplasmic reticular Ca2+-transport ATPase by vanadate. Z Naturforsch C. 1986 Mar;41(3):310–314. doi: 10.1515/znc-1986-0311. [DOI] [PubMed] [Google Scholar]
- Varsányi M., Messer M., Brandt N. R., Heilmeyer L. M., Jr Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1395–1404. doi: 10.1016/s0006-291x(86)80438-7. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]