Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Nov 15;248(1):35–41. doi: 10.1042/bj2480035

Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver.

D B Buxton 1, R A Fisher 1, S M Robertson 1, M S Olson 1
PMCID: PMC1148497  PMID: 2829826

Abstract

Infusion of adenosine into perfused rat livers resulted in transient increases in glucose output, portal-vein pressure, the effluent perfusate [lactate]/[pyruvate] ratio, and O2 consumption. 8-Phenyltheophylline (10 microM) inhibited adenosine responses, whereas dipyridamole (50 microM) potentiated the vasoconstrictive effect of adenosine. The order of potency for adenosine analogues was: 5'-N-ethylcarboxamidoadenosine (NECA) greater than L-phenylisopropyladenosine greater than cyclohexyladenosine greater than D-phenylisopropyladenosine greater than 2-chloroadenosine greater than adenosine, consistent with adenosine actions modulated through P1-purine receptors of the A2-subtype. Hepatic responses exhibited homologous desensitization in response to repeated infusion of adenosine. Adenosine effects on the liver were attenuated at lower perfusate Ca2+ concentrations. Indomethacin decreased hepatic responses to both adenosine and NECA. Whereas adenosine stimulated glycogen phosphorylase activity in isolated hepatocytes, NECA caused no effect in hepatocytes. The response to adenosine in hepatocytes was inhibited by dipyridamole (50 microM), but not 8-phenyltheophylline (10 microM). The present study indicates that, although adenosine has direct effects on parenchymal cells, indirect effects of adenosine, mediated through the A2-purinergic receptors on another hepatic cell type, appear to play a role in the perfused liver.

Full text

PDF
39

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartrons R., Van Schaftingen E., Hers H. G. The ability of adenosine to decrease the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. A cyclic AMP-mediated effect. Biochem J. 1984 Feb 15;218(1):157–163. doi: 10.1042/bj2180157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belloni F. L., Elkin P. L., Giannotto B. The mechanism of adenosine release from hypoxic rat liver cells. Br J Pharmacol. 1985 Jun;85(2):441–446. doi: 10.1111/j.1476-5381.1985.tb08880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown C. M., Collis M. G. Adenosine contracts the isolated rat tail artery by releasing endogenous 5-hydroxytryptamine. Eur J Pharmacol. 1981 Dec 3;76(2-3):275–277. doi: 10.1016/0014-2999(81)90513-6. [DOI] [PubMed] [Google Scholar]
  4. Burnstock G., Hills J. M., Hoyle C. H. Evidence that the P1-purinoceptor in the guinea-pig taenia coli is an A2-subtype. Br J Pharmacol. 1984 Mar;81(3):533–541. doi: 10.1111/j.1476-5381.1984.tb10106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buxton D. B., Fisher R. A., Briseno D. L., Hanahan D. J., Olson M. S. Glycogenolytic and haemodynamic responses to heat-aggregated immunoglobulin G and prostaglandin E2 in the perfused rat liver. Biochem J. 1987 Apr 15;243(2):493–498. doi: 10.1042/bj2430493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buxton D. B., Fisher R. A., Hanahan D. J., Olson M. S. Platelet-activating factor-mediated vasoconstriction and glycogenolysis in the perfused rat liver. J Biol Chem. 1986 Jan 15;261(2):644–649. [PubMed] [Google Scholar]
  7. Buxton D. B., Hanahan D. J., Olson M. S. Stimulation of glycogenolysis and platelet-activating factor production by heat-aggregated immunoglobulin G in the perfused rat liver. J Biol Chem. 1984 Nov 25;259(22):13758–13761. [PubMed] [Google Scholar]
  8. Buxton D. B., Robertson S. M., Olson M. S. Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver. Biochem J. 1986 Aug 1;237(3):773–780. doi: 10.1042/bj2370773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Charest R., Blackmore P. F., Exton J. H. Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem. 1985 Dec 15;260(29):15789–15794. [PubMed] [Google Scholar]
  10. Colin D. A., Leray C. Interaction of adenosine and its phosphorylated derivatives with putative purinergic receptors in the gill vascular bed of rainbow trout. Pflugers Arch. 1979 Dec;383(1):35–40. doi: 10.1007/BF00584472. [DOI] [PubMed] [Google Scholar]
  11. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  12. Fain J. N., Shepherd R. E. Adenosine, cyclic AMP metabolism, and glycogenolysis in rat liver cells. J Biol Chem. 1977 Nov 25;252(22):8066–8070. [PubMed] [Google Scholar]
  13. Greenway C. V. Mechanisms and quantitative assessment of drug effects on cardiac output with a new model of the circulation. Pharmacol Rev. 1981 Dec;33(4):213–251. [PubMed] [Google Scholar]
  14. Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
  15. Ismail N. A., Hems D. A. Effects of adenosine on glucose and lipid metabolism and hepatic blood flow. Biochem Pharmacol. 1978 May 1;27(9):1341–1345. doi: 10.1016/0006-2952(78)90117-x. [DOI] [PubMed] [Google Scholar]
  16. Keppens S., Vandenheede J. R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977 Feb 28;496(2):448–457. doi: 10.1016/0304-4165(77)90327-0. [DOI] [PubMed] [Google Scholar]
  17. Kolassa N., Pfleger K. Adenosine uptake by erythrocytes of man, rat and guinea-pig and its inhibition by hexobendine and dipyridamole. Biochem Pharmacol. 1975 Jan 1;24(1):154–156. doi: 10.1016/0006-2952(75)90331-7. [DOI] [PubMed] [Google Scholar]
  18. Lautt W. W., Legare D. J., d'Almeida M. S. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985 Mar;248(3 Pt 2):H331–H338. doi: 10.1152/ajpheart.1985.248.3.H331. [DOI] [PubMed] [Google Scholar]
  19. Londos C., Cooper D. M., Schlegel W., Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5362–5366. doi: 10.1073/pnas.75.11.5362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCuskey R. S. A dynamic and static study of hepatic arterioles and hepatic sphincters. Am J Anat. 1966 Nov;119(3):455–477. doi: 10.1002/aja.1001190307. [DOI] [PubMed] [Google Scholar]
  22. Meghji P., Burnstock G. An unusual excitatory action of adenosine on the ventricular muscle of the South African clawed toad (Xenopus laevis). Eur J Pharmacol. 1983 May 6;89(3-4):251–258. doi: 10.1016/0014-2999(83)90501-0. [DOI] [PubMed] [Google Scholar]
  23. Sakai K., Akima M., Matsushita H. Femoral vascular responses to purine and pyrimidine derivatives: release of 5-hydroxytryptamine by purine derivatives in isolated, cross-circulated rat hindlimb. Jpn J Pharmacol. 1979 Apr;29(2):243–251. doi: 10.1254/jjp.29.243. [DOI] [PubMed] [Google Scholar]
  24. Sakai K., Akima M. Tryptaminergic vasoconstriction induced by adenosine in the femoral vascular bed of the rat. Jpn J Pharmacol. 1977 Dec;27(6):908–910. doi: 10.1254/jjp.27.908. [DOI] [PubMed] [Google Scholar]
  25. Sakai K., Akima M. Vasoconstriction after adenosine and inosine in the rat isolated hindlimb abolished by blockade of tryptaminergic mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 1978 Mar;302(1):55–59. doi: 10.1007/BF00586597. [DOI] [PubMed] [Google Scholar]
  26. Sakai K. Tryptaminergic mechanism participating in induction of vasoconstriction by adenine nucleotides, adenosine, IMP and inosine in the isolated and blood-perfused hindlimb preparation of the rat. Jpn J Pharmacol. 1978 Aug;28(4):579–587. doi: 10.1254/jjp.28.579. [DOI] [PubMed] [Google Scholar]
  27. Satchell D. G., Burnstock G. Comparison of the inhibitory effects on the guinea-pig taenia coli of adenine nucleotides and adenosine in the presence and absence of dipyridamole. Eur J Pharmacol. 1975 Jun-Jul;32(02):324–328. doi: 10.1016/0014-2999(75)90299-x. [DOI] [PubMed] [Google Scholar]
  28. Scholz R., Hansen W., Thurman R. G. Interaction of mixed-function oxidation with biosynthetic processes. 1. Inhibition of gluconeogenesis by aminopyrine in perfused rat liver. Eur J Biochem. 1973 Sep 21;38(1):64–72. doi: 10.1111/j.1432-1033.1973.tb03034.x. [DOI] [PubMed] [Google Scholar]
  29. Schütz W., Tuisl E., Kraupp O. Adenosine receptor agonists: binding and adenylate cyclase stimulation in rat liver plasma membranes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Apr;319(1):34–39. doi: 10.1007/BF00491475. [DOI] [PubMed] [Google Scholar]
  30. Theen J., Gilboe D. P., Nuttall F. Q. Liver glycogen synthase and phosphorylase changes in vivo with hypoxia and anesthetics. Am J Physiol. 1982 Sep;243(3):E182–E187. doi: 10.1152/ajpendo.1982.243.3.E182. [DOI] [PubMed] [Google Scholar]
  31. Verma A., Marangos P. J. Nitrobenzylthioinosine binding in brain: an interspecies study. Life Sci. 1985 Jan 21;36(3):283–290. doi: 10.1016/0024-3205(85)90071-2. [DOI] [PubMed] [Google Scholar]
  32. Williams E. F., Barker P. H., Clanachan A. S. Nucleoside transport in heart: species differences in nitrobenzylthioinosine binding, adenosine accumulation, and drug-induced potentiation of adenosine action. Can J Physiol Pharmacol. 1984 Jan;62(1):31–37. doi: 10.1139/y84-005. [DOI] [PubMed] [Google Scholar]
  33. Woods H. F., Krebs H. A. Lactate production in the perfused rat liver. Biochem J. 1971 Nov;125(1):129–139. doi: 10.1042/bj1250129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]
  35. van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES