Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 15;251(2):347–356. doi: 10.1042/bj2510347

Proteoglycans of the human intervertebral disc. Electrophoretic heterogeneity of the aggregating proteoglycans of the nucleus pulposus.

M R Jahnke 1, C A McDevitt 1
PMCID: PMC1149009  PMID: 3041961

Abstract

Nuclei pulposi were dissected from lumbar discs of radiologically normal human spines of cadavers aged 17, 20 and 21 years. Proteoglycans were extracted with 4 M guanidine hydrochloride (dissociative conditions) with proteinase inhibitors and isolated as A1 fractions by associative density-gradient centrifugation. Aggregating and non-aggregating proteoglycans were separated by Sepharose 2B chromatography. Both aggregating and non-aggregating proteoglycans contained a keratan sulphate-rich region as isolated by chondroitinase/trypsin/chymotrypsin digestion and Sepharose CL-6B chromatography. Agarose/acrylamide-gel electrophoresis of individual fractions of a Bio-Gel A-50m dissociative-column separation of the aggregating proteoglycans revealed two, well-separated bands: S and F, the slower and faster migrating bands respectively. The non-aggregating proteoglycan fractions were eluted under associative conditions (0.5 M-sodium acetate, pH 6.8) and migrated as a single band in the electrophoretic system. The gel-electrophoretic heterogeneity of the aggregating proteoglycans was still evident after hydroxylamine fragmentation and removal of the hyaluronate-binding portion of the molecule. Dissociative density-gradient centrifugation of the aggregating proteoglycans partially separated the Band-S proteoglycans from the Band-F population. Subsequent dissociative chromatography of the high-buoyant-density Band F proteoglycans permitted discrimination of this band into two gel-electrophoresis-distinguishable populations (Bands F-1 and F-2). Enzyme-linked immunosorbent assays with a monoclonal antibody that recognized keratan sulphate demonstrated that the D1 fraction containing the Band F-1 proteoglycans was enriched in keratan sulphate compared with the total aggregating or non-aggregating pool of proteoglycans. The proteoglycans of young adult nucleus pulposus could then be ascribed to one of four structurally and/or electrophoretically distinct populations: (1) the non-aggregating population, which comprised about 70% of the total extractable proteoglycans; (2) the aggregating pool, comprising: (a) Band F-1 proteoglycans, which had a relatively large hydrodynamic size, uronate/protein weight ratio, were enriched in keratan sulphate and had a high buoyant density; (b) Band S proteoglycans, which migrated slower in agarose/acrylamide gels, had a smaller hydrodynamic size, lower buoyant density and a lower uronate/protein ratio than the Band F-1 population; (c) Band F-2 proteoglycans, which were lower in buoyant density, smaller in hydrodynamic size and slightly faster in electrophoretic mobility than the Band F-1 proteoglycans.

Full text

PDF
351

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. E., Grant M. D., Ho A. Cartilage proteoglycan changes in experimental canine osteoarthritis. J Rheumatol. 1987 May;14(Spec No):107–109. [PubMed] [Google Scholar]
  2. Adams P., Muir H. Qualitative changes with age of proteoglycans of human lumbar discs. Ann Rheum Dis. 1976 Aug;35(4):289–296. doi: 10.1136/ard.35.4.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayliss M. T., Ali S. Y. Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J. 1978 Dec 15;176(3):683–693. doi: 10.1042/bj1760683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayliss M. T., Urban J. P., Johnstone B., Holm S. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4(1):10–17. doi: 10.1002/jor.1100040102. [DOI] [PubMed] [Google Scholar]
  5. Bornstein P., Balian G. The specific nonenzymatic cleavage of bovine ribonuclease with hydroxylamine. J Biol Chem. 1970 Sep 25;245(18):4854–4856. [PubMed] [Google Scholar]
  6. Brennan M. J., Oldberg A., Ruoslahti E., Brown K., Schwartz N. Immunological evidence for two distinct chondroitin sulfate proteoglycan core proteins: differential expression in cartilage matrix deficient mice. Dev Biol. 1983 Jul;98(1):139–147. doi: 10.1016/0012-1606(83)90342-1. [DOI] [PubMed] [Google Scholar]
  7. Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
  8. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  9. Cole T. C., Burkhardt D., Frost L., Ghosh P. The proteoglycans of the canine intervertebral disc. Biochim Biophys Acta. 1985 Apr 17;839(2):127–138. doi: 10.1016/0304-4165(85)90029-7. [DOI] [PubMed] [Google Scholar]
  10. Cole T. C., Ghosh P., Taylor T. K. Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta. 1986 Feb 19;880(2-3):209–219. doi: 10.1016/0304-4165(86)90082-6. [DOI] [PubMed] [Google Scholar]
  11. Cox M. J., McDevitt C. A., Arnoczky S. P., Warren R. F. Changes in the chondroitin sulfate-rich region of articular cartilage proteoglycans in experimental osteoarthritis. Biochim Biophys Acta. 1985 Jun 18;840(2):228–234. doi: 10.1016/0304-4165(85)90123-0. [DOI] [PubMed] [Google Scholar]
  12. DAVIDSON E. A., WOODHALL B. Biochemical alterations in herniated intervertebral disks. J Biol Chem. 1959 Nov;234:2951–2954. [PubMed] [Google Scholar]
  13. Dahlberg A. E., Dingman C. W., Peacock A. C. Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J Mol Biol. 1969 Apr 14;41(1):139–147. doi: 10.1016/0022-2836(69)90131-4. [DOI] [PubMed] [Google Scholar]
  14. DiFabio J. L., Pearce R. H., Caterson B., Hughes H. The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc. Biochem J. 1987 May 15;244(1):27–33. doi: 10.1042/bj2440027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Emes J. H., Pearce R. H. The proteoglycans of the human intervertebral disc. Biochem J. 1975 Mar;145(3):549–556. doi: 10.1042/bj1450549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heinegård D., Axelsson I. Distribution of keratan sulfate in cartilage proteoglycans. J Biol Chem. 1977 Mar 25;252(6):1971–1979. [PubMed] [Google Scholar]
  17. Heinegård D., Axelsson I., Inerot S. Skeletal keratan sulfate from different tissues. Characterization and alkaline degradation. Biochim Biophys Acta. 1979 Nov 23;581(1):122–127. doi: 10.1016/0005-2795(79)90228-9. [DOI] [PubMed] [Google Scholar]
  18. Heinegård D. Extraction, fractionation and characterization of proteoglycans from bovine tracheal cartilage. Biochim Biophys Acta. 1972 Nov 28;285(1):181–192. doi: 10.1016/0005-2795(72)90190-0. [DOI] [PubMed] [Google Scholar]
  19. Heinegård D., Gardell S. Studies on protein-polysaccharide complex (proteoglycan) from human nucleus pulposus. I. Isolation and preliminary characterisation. Biochim Biophys Acta. 1967 Oct 9;148(1):164–171. doi: 10.1016/0304-4165(67)90292-9. [DOI] [PubMed] [Google Scholar]
  20. Heinegård D., Wieslander J., Sheehan J., Paulsson M., Sommarin Y. Separation and characterization of two populations of aggregating proteoglycans from cartilage. Biochem J. 1985 Jan 1;225(1):95–106. doi: 10.1042/bj2250095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Inerot S., Heinegård D., Audell L., Olsson S. E. Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J. 1978 Jan 1;169(1):143–156. doi: 10.1042/bj1690143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Inerot S., Heinegård D. Bovine tracheal cartilage proteoglycans. Variations in structure and composition with age. Coll Relat Res. 1983 May;3(3):245–262. doi: 10.1016/s0174-173x(83)80007-7. [DOI] [PubMed] [Google Scholar]
  23. Lau C. K., Fujitaki J. M. An improved method of microdialysis. Anal Biochem. 1981 Jan 1;110(1):144–145. doi: 10.1016/0003-2697(81)90125-1. [DOI] [PubMed] [Google Scholar]
  24. Lowther D. A., Baxter E. Isolation of a chondroitin sulphate protein complex from bovine intervertebral disks. Nature. 1966 Aug 6;211(5049):595–597. doi: 10.1038/211595a0. [DOI] [PubMed] [Google Scholar]
  25. McDevitt C. A., Muir H. Gel electrophoresis of proteoglycans and glycosaminoglycans on large-pore composite polyacrylamide-agarose gels. Anal Biochem. 1971 Dec;44(2):612–622. doi: 10.1016/0003-2697(71)90250-8. [DOI] [PubMed] [Google Scholar]
  26. Mehmet H., Scudder P., Tang P. W., Hounsell E. F., Caterson B., Feizi T. The antigenic determinants recognized by three monoclonal antibodies to keratan sulphate involve sulphated hepta- or larger oligosaccharides of the poly(N-acetyllactosamine) series. Eur J Biochem. 1986 Jun 2;157(2):385–391. doi: 10.1111/j.1432-1033.1986.tb09680.x. [DOI] [PubMed] [Google Scholar]
  27. Oegema T. R., Jr, Bradford D. S., Cooper K. M. Aggregated proteoglycan synthesis in organ cultures of human nucleus pulposus. J Biol Chem. 1979 Nov 10;254(21):10579–10581. [PubMed] [Google Scholar]
  28. Oegema T. R., Jr, Hascall V. C., Dziewiatkowski D. D. Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1975 Aug 10;250(15):6151–6159. [PubMed] [Google Scholar]
  29. Oosta G. M., Mathewson N. S., Catravas G. N. Optimization of Folin--Ciocalteu Reagent concentration in an automated Lowry protein assay. Anal Biochem. 1978 Aug 15;89(1):31–34. doi: 10.1016/0003-2697(78)90723-6. [DOI] [PubMed] [Google Scholar]
  30. Pearce R. H., Grimmer B. J., Adams M. E. Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 1987;5(2):198–205. doi: 10.1002/jor.1100050206. [DOI] [PubMed] [Google Scholar]
  31. Pearson J. P., Mason R. M. The stability of bovine nasal cartilage proteoglycans during isolation and storage. Biochim Biophys Acta. 1977 Jun 23;498(1):176–188. doi: 10.1016/0304-4165(77)90098-8. [DOI] [PubMed] [Google Scholar]
  32. Pedrini V. Electrophoretic heterogeneity of proteinpolysaccharides. J Biol Chem. 1969 Mar 25;244(6):1540–1546. [PubMed] [Google Scholar]
  33. Rennard S. I., Berg R., Martin G. R., Foidart J. M., Robey P. G. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem. 1980 May 1;104(1):205–214. doi: 10.1016/0003-2697(80)90300-0. [DOI] [PubMed] [Google Scholar]
  34. Roughley P. J., Mason R. M. The electrophoretic heterogeneity of bovine nasal cartilage proteoglycans. Biochem J. 1976 Aug 1;157(2):357–367. doi: 10.1042/bj1570357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
  36. Roughley P. J., White R. J. The use of caesium sulphate density gradient centrifugation to analyse proteoglycans from human articular cartilages of different ages. Biochim Biophys Acta. 1983 Aug 23;759(1-2):58–66. doi: 10.1016/0304-4165(83)90189-7. [DOI] [PubMed] [Google Scholar]
  37. Stanescu V., Maroteaux P., Sobczak E. Proteoglycan populations of baboon (Papio papio) articular cartilage. Biochem J. 1977 Apr 1;163(1):103–109. doi: 10.1042/bj1630103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stanescu V., Maroteaux P., Sobczak E. Proteoglycan populations of baboon (Papio papio) cartilages from different anatomical sites: gel electrophoretic analysis of dissociated proteoglycans and of fractions obtained by density gradient centrifugation. Biochim Biophys Acta. 1980 May 7;629(2):371–381. doi: 10.1016/0304-4165(80)90109-9. [DOI] [PubMed] [Google Scholar]
  39. Stevens R. L., Dondi P. G., Muir H. Proteoglycans of the intervertebral disc. Absence of degradation during the isolation of proteoglycans from the intervertebral disc. Biochem J. 1979 Jun 1;179(3):573–578. doi: 10.1042/bj1790573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stevens R. L., Ewins R. J., Revell P. A., Muir H. Proteoglycans of the intervertebral disc. Homology of structure with laryngeal proteoglycans. Biochem J. 1979 Jun 1;179(3):561–572. doi: 10.1042/bj1790561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sweet M. B., Thonar E. J., Marsh J. Age-related changes in proteoglycan structure. Arch Biochem Biophys. 1979 Dec;198(2):439–448. doi: 10.1016/0003-9861(79)90518-6. [DOI] [PubMed] [Google Scholar]
  42. Tengblad A., Pearce R. H., Grimmer B. J. Demonstration of link protein in proteoglycan aggregates from human intervertebral disc. Biochem J. 1984 Aug 15;222(1):85–92. doi: 10.1042/bj2220085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Triphaus G. F., Schmidt A., Buddecke E. Age-related changes in the incorporation of [35S]sulfate into two proteoglycan populations from human cartilage. Hoppe Seylers Z Physiol Chem. 1980 Dec;361(12):1773–1779. doi: 10.1515/bchm2.1980.361.2.1773. [DOI] [PubMed] [Google Scholar]
  44. Wieslander J., Heinegård D. Immunochemical analysis of cartilage proteoglycans. Cross-reactivity of molecules isolated from different species. Biochem J. 1981 Oct 1;199(1):81–87. doi: 10.1042/bj1990081. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES