Abstract
The effect of various parameters on the electric shock-mediated permeabilization and transfection of CHO cells has been investigated. Up to 70% of the cells can be maintained transiently permeable to erythrosin B for periods of at least 1 h at 20 degrees C. Electrical conditions optimal for transient permeabilization were also optimal for efficient DNA transfection by pSV2neo. However, the DNA must be present during exposure to the electric field for efficient transformation. The same requirement existed for voltage-induced DNA toxicity. The results suggest that DNA moves into the cells by electrophoresis, not by simple diffusion. Based on these observations a simple, rapid procedure for optimizing the conditions for electric shock-mediated DNA transfer into cells has been developed.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chu G., Hayakawa H., Berg P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 1987 Feb 11;15(3):1311–1326. doi: 10.1093/nar/15.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnstone A., McNerney R. Changes in topoisomerase I activity after irradiation of lymphoid cells. Biosci Rep. 1985 Oct-Nov;5(10-11):907–912. doi: 10.1007/BF01119903. [DOI] [PubMed] [Google Scholar]
- Kao F. T., Puck T. T. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1275–1281. doi: 10.1073/pnas.60.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinosita K., Jr, Tsong T. Y. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature. 1977 Aug 4;268(5619):438–441. doi: 10.1038/268438a0. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Tsong T. Y. Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta. 1977 Dec 1;471(2):227–242. doi: 10.1016/0005-2736(77)90252-8. [DOI] [PubMed] [Google Scholar]
- Narayanan R., Jastreboff M. M., Chiu C. F., Bertino J. R. In vivo expression of a nonselected gene transferred into murine hematopoietic stem cells by electroporation. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1018–1024. doi: 10.1016/s0006-291x(86)80146-2. [DOI] [PubMed] [Google Scholar]
- Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter H., Weir L., Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiss M., Jastreboff M. M., Bertino J. R., Narayanan R. DNA-mediated gene transfer into epidermal cells using electroporation. Biochem Biophys Res Commun. 1986 May 29;137(1):244–249. doi: 10.1016/0006-291x(86)91202-7. [DOI] [PubMed] [Google Scholar]
- Rossignol D. P., Decker G. L., Lennarz W. J., Tsong T. Y., Teissie J. Induction of calcium-dependent, localized cortical granule breakdown in sea-urchin eggs by voltage pulsation. Biochim Biophys Acta. 1983 Dec 19;763(4):346–355. doi: 10.1016/0167-4889(83)90096-4. [DOI] [PubMed] [Google Scholar]
- Serpersu E. H., Kinosita K., Jr, Tsong T. Y. Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta. 1985 Feb 14;812(3):779–785. doi: 10.1016/0005-2736(85)90272-x. [DOI] [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Spandidos D. A. Electric field-mediated gene transfer (electroporation) into mouse Friend and human K562 erythroleukemic cells. Gene Anal Tech. 1987 May-Jun;4(3):50–56. doi: 10.1016/0735-0651(87)90018-5. [DOI] [PubMed] [Google Scholar]
- Stopper H., Zimmermann U., Wecker E. High yields of DNA-transfer into mouse L-cells by electropermeabilization. Z Naturforsch C. 1985 Nov-Dec;40(11-12):929–932. [PubMed] [Google Scholar]
- Toneguzzo F., Hayday A. C., Keating A. Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells. Mol Cell Biol. 1986 Feb;6(2):703–706. doi: 10.1128/mcb.6.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tur-Kaspa R., Teicher L., Levine B. J., Skoultchi A. I., Shafritz D. A. Use of electroporation to introduce biologically active foreign genes into primary rat hepatocytes. Mol Cell Biol. 1986 Feb;6(2):716–718. doi: 10.1128/mcb.6.2.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerbib D., Amalric F., Teissié J. Electric field mediated transformation: isolation and characterization of a TK+ subclone. Biochem Biophys Res Commun. 1985 Jun 28;129(3):611–618. doi: 10.1016/0006-291x(85)91935-7. [DOI] [PubMed] [Google Scholar]
- Zimmermann U., Vienken J. Electric field-induced cell-to-cell fusion. J Membr Biol. 1982;67(3):165–182. doi: 10.1007/BF01868659. [DOI] [PubMed] [Google Scholar]
