Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 15;251(2):453–459. doi: 10.1042/bj2510453

Beta-lactamase inhibitors. The inhibition of serine beta-lactamases by specific boronic acids.

I E Crompton 1, B K Cuthbert 1, G Lowe 1, S G Waley 1
PMCID: PMC1149024  PMID: 3135799

Abstract

Many beta-lactamases have active-site serine residues, and are competitively inhibited by boronic acids. Hitherto, the boronic acids used have lacked any structural resemblance to the substrates of beta-lactamases. Phenylacetamidomethaneboronic acid, trifluoroacetamidomethaneboronic acid and 2,6-dimethoxybenzamidomethaneboronic acid have now been synthesized. The first of these contains the side-chain moiety of penicillin G, and the last that of methicillin. The pH-dependence of binding of the first inhibitor to beta-lactamase I from Bacillus cereus revealed pK values of 4.7 and 8.2 for (presumably) active-site groups in the enzyme. The kinetics of inhibition were studied by cryoenzymology and by stopped-flow spectrophotometry. These techniques provided evidence for a two-step mechanism of binding of the first two boronic acids mentioned above to beta-lactamase I, and for benzeneboronic acid to a beta-lactamase from Pseudomonas aeruginosa. The slower step is probably associated with a change in enzyme conformation as well as the formation of an O-B bond between the active-site serine hydroxy group and the boronic acid.

Full text

PDF
457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM E. P., NEWTON G. G. Experiments on the degradation of cephalosporin C. Biochem J. 1956 Apr;62(4):658–665. doi: 10.1042/bj0620658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin G. S., Edwards G. F., Kiener P. A., Tully M. J., Waley S. G., Abraham E. P. Production of a variant of beta-lactamase II with selectively decreased cephalosporinase activity by a mutant of Bacillus cereus 569/H/9. Biochem J. 1980 Oct 1;191(1):111–116. doi: 10.1042/bj1910111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barshop B. A., Wrenn R. F., Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM--a flexible, portable system. Anal Biochem. 1983 Apr 1;130(1):134–145. doi: 10.1016/0003-2697(83)90660-7. [DOI] [PubMed] [Google Scholar]
  4. Beesley T., Gascoyne N., Knott-Hunziker V., Petursson S., Waley S. G., Jaurin B., Grundström T. The inhibition of class C beta-lactamases by boronic acids. Biochem J. 1983 Jan 1;209(1):229–233. doi: 10.1042/bj2090229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berks M., Redhead K., Abraham E. P. Isolation and properties of an inducible and a constitutive beta-lactamase from Pseudomonas aeruginosa. J Gen Microbiol. 1982 Jan;128(1):155–159. doi: 10.1099/00221287-128-1-155. [DOI] [PubMed] [Google Scholar]
  6. Bicknell R., Waley S. G. Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry. 1985 Nov 19;24(24):6876–6887. doi: 10.1021/bi00345a021. [DOI] [PubMed] [Google Scholar]
  7. Cartwright S. J., Waley S. G. Cryoenzymology of beta-lactamases. Biochemistry. 1987 Aug 25;26(17):5329–5337. doi: 10.1021/bi00391a017. [DOI] [PubMed] [Google Scholar]
  8. Cartwright S. J., Waley S. G. Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J. 1984 Jul 15;221(2):505–512. doi: 10.1042/bj2210505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cha S. Tight-binding inhibitors-I. Kinetic behavior. Biochem Pharmacol. 1975 Dec 1;24(23):2177–2185. doi: 10.1016/0006-2952(75)90050-7. [DOI] [PubMed] [Google Scholar]
  10. Davies R. B., Abraham E. P. Separation, purification and properties of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9. Biochem J. 1974 Oct;143(1):115–127. doi: 10.1042/bj1430115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dobozy O., Mile I., Ferencz I., Csányi V. Effect of electrolytes on the activity and iodine sensitivity of penicillinase from B. cereus. Acta Biochim Biophys Acad Sci Hung. 1971;6(2):97–105. [PubMed] [Google Scholar]
  12. Duggleby R. G., Attwood P. V., Wallace J. C., Keech D. B. Avidin is a slow-binding inhibitor of pyruvate carboxylase. Biochemistry. 1982 Jul 6;21(14):3364–3370. doi: 10.1021/bi00257a018. [DOI] [PubMed] [Google Scholar]
  13. Duggleby R. G. Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. Biochem J. 1985 May 15;228(1):55–60. doi: 10.1042/bj2280055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
  15. Flett F., Curtis N. A., Richmond M. H. Mutant of Pseudomonas aeruginosa 18S that synthesizes type Id beta-lactamase constitutively. J Bacteriol. 1976 Sep;127(3):1585–1586. doi: 10.1128/jb.127.3.1585-1586.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herzberg O., Moult J. Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. Science. 1987 May 8;236(4802):694–701. doi: 10.1126/science.3107125. [DOI] [PubMed] [Google Scholar]
  17. Imperiali B., Abeles R. H. Inhibition of serine proteases by peptidyl fluoromethyl ketones. Biochemistry. 1986 Jul 1;25(13):3760–3767. doi: 10.1021/bi00361a005. [DOI] [PubMed] [Google Scholar]
  18. Kettner C. A., Shenvi A. B. Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids. J Biol Chem. 1984 Dec 25;259(24):15106–15114. [PubMed] [Google Scholar]
  19. Kiener P. A., Waley S. G. Reversible inhibitors of penicillinases. Biochem J. 1978 Jan 1;169(1):197–204. doi: 10.1042/bj1690197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kiener P. A., Waley S. G. Substrate-induced deactivation of penicillinases. Studies of beta-lactamase I by hydrogen exchange. Biochem J. 1977 Aug 1;165(2):279–285. doi: 10.1042/bj1650279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laskowski M., Jr, finkenstadt W. R. Study of protein-protein and of protein-ligand interactions by potentiometric methods. Methods Enzymol. 1972;26:193–277. doi: 10.1016/s0076-6879(72)26012-8. [DOI] [PubMed] [Google Scholar]
  22. Lindquist R. N., Nguyen A. C. Aminomethaneboronic acids. Synthesis and inhibition of boron analogue of esterase substrates. J Am Chem Soc. 1977 Sep 14;99(19):6435–6437. doi: 10.1021/ja00461a043. [DOI] [PubMed] [Google Scholar]
  23. Matthews D. A., Alden R. A., Birktoft J. J., Freer S. T., Kraut J. X-ray crystallographic study of boronic acid adducts with subtilisin BPN' (Novo). A model for the catalytic transition state. J Biol Chem. 1975 Sep 25;250(18):7120–7126. [PubMed] [Google Scholar]
  24. Nakatani H., Uehara Y., Hiromi K. Elementary processes in the interaction of serine protease with a possible transition state analog. Subtillisin-benzeneboronic acid system. J Biochem. 1975 Sep;78(3):611–616. doi: 10.1093/oxfordjournals.jbchem.a130947. [DOI] [PubMed] [Google Scholar]
  25. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Philipp M., Bender M. L. Inhibition of serine proteases by arylboronic acids. Proc Natl Acad Sci U S A. 1971 Feb;68(2):478–480. doi: 10.1073/pnas.68.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selwyn M. J. A simple test for inactivation of an enzyme during assay. Biochim Biophys Acta. 1965 Jul 29;105(1):193–195. doi: 10.1016/s0926-6593(65)80190-4. [DOI] [PubMed] [Google Scholar]
  28. Waley S. G. The pH-dependence and group modification of beta-lactamase I. Biochem J. 1975 Sep;149(3):547–551. doi: 10.1042/bj1490547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams J. W., Morrison J. F. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 1979;63:437–467. doi: 10.1016/0076-6879(79)63019-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES