Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jun 1;252(2):375–379. doi: 10.1042/bj2520375

Different metabolic recycling of the lipid components of exogenous sulphatide in human fibroblasts.

M Trinchera 1, U Wiesmann 1, M Pitto 1, D Acquotti 1, R Ghidoni 1
PMCID: PMC1149155  PMID: 3415659

Abstract

Cultured human fibroblasts were fed with two differently labelled sulphatide molecules [one labelled on C-3 of the sphingosine (Sph) moiety [( Sph-3H]sulphatide), the second on C-1 of stearic acid [( stearoyl-14C]sulphatide)], and the intracellular metabolic fate of radioactivity was monitored. Incorporated radioactivity was almost all recovered in the total lipid extract, regardless of the labelling position of the added sulphatide; however, large differences in the level of incorporation occurred among labelled glycosphingolipids. For example, sphingomyelin was present as the major radiolabelled lipid after [Sph-3H]-sulphatide incubation, but was detectable only in trace amounts after [stearoyl-14C]sulphatide administration; in the latter case the radioactivity was located predominantly in glycerophospholipids. From this finding it can be inferred that the free long-chain base (sphingosine) that originates from lysosomal catabolism of sulphatide is mainly, and quite specifically, utilized for sphingomyelin biosynthesis, whereas the ceramide moiety is not; conversely the fatty acid released from ceramide is non-specifically re-utilized for phospholipid biosynthesis.

Full text

PDF
376

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dubois G., Zalc B., Le Saux F., Baumann N. Stearoyl[1-14C]sulfogalactosylsphingosine ([14C]sulfatide) as substrate for cerebroside sulfatase assay. Anal Biochem. 1980 Mar 1;102(2):313–317. doi: 10.1016/0003-2697(80)90159-1. [DOI] [PubMed] [Google Scholar]
  2. Fishman P. H., Bradley R. M., Hom B. E., Moss J. Uptake and metabolism of exogenous gangliosides by cultured cells: effect of choleragen on the turnover of GM1. J Lipid Res. 1983 Aug;24(8):1002–1011. [PubMed] [Google Scholar]
  3. Ghidoni R., Sonnino S., Chigorno V., Venerando B., Tettamanti G. Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver. Biochem J. 1983 Aug 1;213(2):321–329. doi: 10.1042/bj2130321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ghidoni R., Sonnino S., Masserini M., Orlando P., Tettamanti G. Specific tritium labeling of gangliosides at the 3-position of sphingosines. J Lipid Res. 1981 Nov;22(8):1286–1295. [PubMed] [Google Scholar]
  5. Ghidoni R., Trinchera M., Venerando B., Fiorilli A., Sonnino S., Tettamanti G. Incorporation and metabolism of exogenous GM1 ganglioside in rat liver. Biochem J. 1986 Jul 1;237(1):147–155. doi: 10.1042/bj2370147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ikezawa H., Mori M., Ohyabu T., Taguchi R. Studies on sphingomyelinase of Bacillus cereus. I. Purification and properties. Biochim Biophys Acta. 1978 Feb 27;528(2):247–256. [PubMed] [Google Scholar]
  7. Kishimoto Y., Mitry M. T. A new procedure for synthesis of 3-keto derivatives of sphingolipids and its application for study of fatty acid composition of brain ceramides and cerebrosides containing dihydrosphingosine of sphingosine. Arch Biochem Biophys. 1974 Apr 2;161(2):426–434. doi: 10.1016/0003-9861(74)90324-5. [DOI] [PubMed] [Google Scholar]
  8. Leroy J. G., Ho M. W., MacBrinn M. C., Zielke K., Jacob J., O'Brien J. S. I-cell disease: biochemical studies. Pediatr Res. 1972 Oct;6(10):752–757. doi: 10.1203/00006450-197210000-00002. [DOI] [PubMed] [Google Scholar]
  9. Leskawa K. C., Dasgupta S., Chien J. L., Hogan E. L. A simplified procedure for the preparation of tritiated GM1 ganglioside and other glycosphingolipids. Anal Biochem. 1984 Jul;140(1):172–177. doi: 10.1016/0003-2697(84)90149-0. [DOI] [PubMed] [Google Scholar]
  10. Porter M. T., Fluharty A. L., Trammell J., Kihara H. A correlation of intracellular cerebroside sulfatase activity in fibroblasts with latency in metachromatic leukodystrophy. Biochem Biophys Res Commun. 1971 Aug 6;44(3):660–666. doi: 10.1016/s0006-291x(71)80134-1. [DOI] [PubMed] [Google Scholar]
  11. Sonderfeld S., Conzelmann E., Schwarzmann G., Burg J., Hinrichs U., Sandhoff K. Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem. 1985 Jun 3;149(2):247–255. doi: 10.1111/j.1432-1033.1985.tb08919.x. [DOI] [PubMed] [Google Scholar]
  12. Sonnino S., Kirschner G., Ghidoni R., Acquotti D., Tettamanti G. Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res. 1985 Feb;26(2):248–257. [PubMed] [Google Scholar]
  13. Tettamanti G., Bonali F., Marchesini S., Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta. 1973 Jan 19;296(1):160–170. doi: 10.1016/0005-2760(73)90055-6. [DOI] [PubMed] [Google Scholar]
  14. Zeigler M., Bach G. Internalization of exogenous gangliosides in cultured skin fibroblasts for the diagnosis of mucolipidosis IV. Clin Chim Acta. 1986 Jun 15;157(2):183–189. doi: 10.1016/0009-8981(86)90224-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES