Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 1;253(1):287–289. doi: 10.1042/bj2530287

The potential diagram for oxygen at pH 7.

P M Wood 1
PMCID: PMC1149288  PMID: 2844170

Abstract

Successive one-electron reductions of molecular oxygen yield the superoxide radical (O2-) H2O2, the hydroxyl radical (OH) and water. Redox potentials at pH 7 for one-, two- and four-electron couples involving these states are presented as a potential diagram. The significance of each of these potentials is explained. The complete potential diagram enables complex systems to be rationalized, such as production of OH by H2O2 plus Fe3+.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fee J. A., DiCorleto P. E. Observations on the oxidation-reduction properties of bovine erythrocyte superoxide dismutase. Biochemistry. 1973 Nov 20;12(24):4893–4899. doi: 10.1021/bi00748a013. [DOI] [PubMed] [Google Scholar]
  2. Gutteridge J. M., Bannister J. V. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese. Biochem J. 1986 Feb 15;234(1):225–228. doi: 10.1042/bj2340225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
  4. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem. 1979 Sep 25;254(18):9101–9106. [PubMed] [Google Scholar]
  6. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  7. Nakajima R., Yamazaki I. The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide. J Biol Chem. 1987 Feb 25;262(6):2576–2581. [PubMed] [Google Scholar]
  8. Penner-Hahn J. E., McMurry T. J., Renner M., Latos-Grazynsky L., Eble K. S., Davis I. M., Balch A. L., Groves J. T., Dawson J. H., Hodgson K. O. X-ray absorption spectroscopic studies of high valent iron porphyrins. Horseradish peroxidase compounds I and II and synthetic models. J Biol Chem. 1983 Nov 10;258(21):12761–12764. [PubMed] [Google Scholar]
  9. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES