Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 15;253(2):541–547. doi: 10.1042/bj2530541

Skeletal muscle mitochondrial beta-oxidation. A study of the products of oxidation of [U-14C]hexadecanoate by h.p.l.c. using continuous on-line radiochemical detection.

N J Watmough 1, A K Bhuiyan 1, K Bartlett 1, H S Sherratt 1, D M Turnbull 1
PMCID: PMC1149331  PMID: 3178728

Abstract

Well-coupled mitochondrial fractions were prepared from rat skeletal muscle without the use of proteolytic enzymes. The products of [U-14C]hexadecanoate oxidation by rat skeletal muscle mitochondrial fractions were analysed by h.p.l.c. with on-line radiochemical detection. In the presence of 1 mM-carnitine, 70% of the products is acetylcarnitine. In agreement with Veerkamp et al. [Veerkamp, van Moerkerk, Glatz, Zuurveld, Jacobs & Wagenmakers (1986) Biochem. Med. Metab. Biol. 35, 248-259] 14CO2 release is shown to be an unreliable estimate of flux through beta-oxidation in skeletal muscle mitochondrial fractions. The flux through beta-oxidation is recorded unambiguously polarographically in the presence of 1 mM-carnitine and the absence of citrate cycle intermediates.

Full text

PDF
546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N. Liver and brain mitochondria. Biochem J. 1957 Nov;67(3):423–431. doi: 10.1042/bj0670423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. J., Allison F., Pollitt R. J., Manning N. J., Gray R. G., Green A., Hale D. E., Coates P. M. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase deficiency in family with sudden infant death. Lancet. 1987 Feb 21;1(8530):440–441. doi: 10.1016/s0140-6736(87)90135-8. [DOI] [PubMed] [Google Scholar]
  3. Bhuiyan A. K., Watmough N. J., Turnbull D. M., Aynsley-Green A., Leonard J. V., Bartlett K. A new simple screening method for the diagnosis of medium chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta. 1987 May 29;165(1):39–44. doi: 10.1016/0009-8981(87)90216-6. [DOI] [PubMed] [Google Scholar]
  4. Bremer J., Davis E. J. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria. Biochim Biophys Acta. 1973 Nov 29;326(2):262–271. doi: 10.1016/0005-2760(73)90252-x. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  6. Carter A. L., Lennon D. L., Stratman F. W. Increased acetyl carnitine in rat skeletal muscle as a result of high-intensity short-duration exercise. Implications in the control of pyruvate dehydrogenase activity. FEBS Lett. 1981 Apr 6;126(1):21–24. doi: 10.1016/0014-5793(81)81023-x. [DOI] [PubMed] [Google Scholar]
  7. Causey A. G., Middleton B., Bartlett K. A study of the metabolism of [U-14C]3-methyl-2-oxopentanoate by rat liver mitochondria using h.p.l.c. with continuous on-line monitoring of radioactive intact acyl-coenzyme A intermediates. Biochem J. 1986 Apr 15;235(2):343–350. doi: 10.1042/bj2350343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chappell J. B., Robinson B. H. Penetration of the mitochondrial membrane by tricarboxylic acid anions. Biochem Soc Symp. 1968;27:123–133. [PubMed] [Google Scholar]
  9. Chase J. F. The substrate specificity of carnitine acetyltransferase. Biochem J. 1967 Aug;104(2):510–518. doi: 10.1042/bj1040510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felig P., Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. doi: 10.1056/NEJM197511202932107. [DOI] [PubMed] [Google Scholar]
  12. Krebs H. A., Hems R. Fatty acid metabolism in the perfused rat liver. Biochem J. 1970 Sep;119(3):525–533. doi: 10.1042/bj1190525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lysiak W., Toth P. P., Suelter C. H., Bieber L. L. Quantitation of the efflux of acylcarnitines from rat heart, brain, and liver mitochondria. J Biol Chem. 1986 Oct 15;261(29):13698–13703. [PubMed] [Google Scholar]
  14. Makinen M. W., Lee C. P. Biochemical studies of skeletal muscle mitochondria. I. Microanalysis of cytochrome content, oxidative and phosphorylative activities of mammalian skeletal muscle mitochondria. Arch Biochem Biophys. 1968 Jul;126(1):75–82. doi: 10.1016/0003-9861(68)90561-4. [DOI] [PubMed] [Google Scholar]
  15. McGarry J. D., Foster D. W. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res. 1976 May;17(3):277–281. [PubMed] [Google Scholar]
  16. McGarry J. D., Foster D. W. Hormonal control of ketogenesis. Biochemical considerations. Arch Intern Med. 1977 Apr;137(4):495–501. [PubMed] [Google Scholar]
  17. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  18. Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
  19. Pande S. V., Blanchaer M. C. Preferential loss of ATP-dependent long-chain fatty acid activating enzyme in mitochondria prepared using Nagarse. Biochim Biophys Acta. 1970 Feb 10;202(1):43–48. doi: 10.1016/0005-2760(70)90216-x. [DOI] [PubMed] [Google Scholar]
  20. Pande S. V. On rate-controlling factors of long chain fatty acid oxidation. J Biol Chem. 1971 Sep 10;246(17):5384–5390. [PubMed] [Google Scholar]
  21. Scarpa A., Lindsay J. G. Maintenance of energy-linked functions in rat-liver mitochondria aged in the presence of nupercaine. Eur J Biochem. 1972 Jun 9;27(3):401–407. doi: 10.1111/j.1432-1033.1972.tb01851.x. [DOI] [PubMed] [Google Scholar]
  22. Sherratt H. S., Watmough N. J., Johnson M. A., Turnbull D. M. Methods for study of normal and abnormal skeletal muscle mitochondria. Methods Biochem Anal. 1988;33:243–335. doi: 10.1002/9780470110546.ch6. [DOI] [PubMed] [Google Scholar]
  23. Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
  24. Turnbull D. M., Bartlett K., Watmough N. J., Shepherd I. M., Sherratt H. S. Defects of fatty acid oxidation in skeletal muscle. J Inherit Metab Dis. 1987;10 (Suppl 1):105–112. doi: 10.1007/BF01812851. [DOI] [PubMed] [Google Scholar]
  25. Turnbull D. M., Sherratt H. S., Davies D. M., Sykes A. G. Tetracyano-2,2-bipyridineiron(iii), an improved electron acceptor for the spectrophotometric assay of beta-oxidation and of succinate dehydrogenase in intact mitochondria. Biochem J. 1982 Sep 15;206(3):511–516. doi: 10.1042/bj2060511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Veerkamp J. H., van Moerkerk T. B., Glatz J. F., Zuurveld J. G., Jacobs A. E., Wagenmakers A. J. 14CO2 production is no adequate measure of [14C]fatty acid oxidation. Biochem Med Metab Biol. 1986 Jun;35(3):248–259. doi: 10.1016/0885-4505(86)90080-0. [DOI] [PubMed] [Google Scholar]
  27. van Hinsbergh V. W., Veerkamp J. H., van Moerkerk H. T. Palmitate oxidation by rat skeletal muscle mitochondria. Comparison of polarographic and radiochemical experiments. Arch Biochem Biophys. 1978 Oct;190(2):762–771. doi: 10.1016/0003-9861(78)90337-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES