Abstract
肥胖作为全球性健康危机,其与肠道微生态的紧密联系日益凸显。益生菌在人体内定殖,有效调节肠道菌群平衡,减少致病菌威胁,促进有益菌生长,同时强化肠道屏障,激活免疫应答,释放有益物质,维持微生态平衡。此过程不仅增强了对病原体的防御,还减少了炎症因子的产生,降低了慢性炎症水平。但益生菌通过免疫应答影响肠道微生态、改善肥胖引起的代谢紊乱,参与体重管理的具体过程和机制尚不清楚。益生菌通过包括“肠-脑轴”在内的多元神经通路及其与肠道的直接作用,在肠道内增加有益菌的数量,同时抑制有害菌的生长,从而有效重构肠道菌群的平衡状态。这种平衡的重构能够优化肠道环境,提升食物的消化效率与营养吸收能力。更重要的是,它对肥胖管理展现出积极效应,通过调节代谢过程,减少脂肪积累,为个体提供了控制体重、预防肥胖的新途径。因此,益生菌的应用在促进肠道健康与体重管理方面具有重要意义。文章重点总结益生菌通重构肠道微生态发挥减轻肥胖作用的研究热点与挑战,为科学补充益生菌在干预肥胖方向更准确和广泛的临床应用提供理论依据。
Keywords: 肥胖, 益生菌, 免疫应答, 肠道微生态, 研究进展。
Abstract
Obesity, as a global health crisis, is increasingly linked to intestinal microecology. Probiotics colonise the body, effectively regulating the balance of intestinal flora, reducing the threat of pathogenic bacteria and promoting the growth of beneficial bacteria, while strengthening the intestinal barrier, activating the immune response, releasing beneficial substances, and maintaining micro-ecological balance. This process not only enhances the defence against pathogens, but also reduces the production of inflammatory factors and lowers the level of chronic inflammation. However, the specific process and mechanism by which probiotics influence the intestinal microecology through the immune response, improve metabolic disorders caused by obesity, and participate in weight management are not clear. Through multiple neural pathways including the ‘gut-brain axis’ and their direct interaction with the intestine, probiotics increase the number of beneficial bacteria in the intestine and inhibit the growth of harmful bacteria, thus effectively restructuring the balance of the intestinal flora. This restructuring of the balance can optimise the intestinal environment and enhance the efficiency of food digestion and nutrient absorption. What's more, it shows positive effects on obesity management by regulating the metabolic process and reducing fat accumulation, providing individuals with a new way to control body weight and prevent obesity. Therefore, the application of probiotics is of great significance in promoting gut health and weight management. The article focuses on summarising the research hotspots and challenges of probiotics through reconfiguring the intestinal microecology to play a role in reducing obesity, and providing a theoretical basis for a more accurate and extensive clinical application of scientific supplementation of probiotics in the direction of intervening obesity.
Keywords: obesity, probiotics, immune response, intestinal microecology
肠道菌群作为宿主体内最为庞大的共生微生物群落,基因库规模高达人类基因总量的150倍,其所承载的遗传信息量远超宿主自身基因组。以肠道菌群为主要构成的微生态系统在宿主肠道免疫系统的塑造、能量代谢的调控、氧化应激的缓解等方面均展现出不可或缺的生物学功能。肠道菌群的构成及其代谢产物的动态变化,已确认为多种代谢性疾病演进过程中的关键因素之一。肠道微生态平衡的扰动,亦与肥胖症的发生发展紧密相关。科学补充益生菌,可以有效地调节肠道菌群的多样性与功能,通过局部和全身调节的多重作用途径,影响宿主的免疫应答,重构肠道微生态,减轻肥胖的综合代谢紊乱。
1. 益生菌与肥胖的关联研究:历史溯源与当代进展
1.1. 肥胖的危害
肥胖症是一种由遗传和环境因素共同导致的脂肪组织过度积累或分布、功能异常的慢性、进行性、复发性疾病[1],主要与能量不平衡即摄入大于消耗有关。作为最严重的全球健康问题之一,众所周知可引发一系列并发症与合并症,如糖尿病、肿瘤、高血压、冠心病、高脂血症、脂肪肝、睡眠呼吸暂停、骨关节炎和精神情绪问题[2]。肥胖的发生发展是一个多因素、复杂的过程,其核心在于遗传与环境因素的交互作用。肥胖的发生发展与遗传因素、生活方式、环境因素、内分泌因素、药物因素密切相关,饮食、运动、生活方式等外部因素直接影响了个体的能量摄入与消耗平衡,进而对体重产生影响。愈来愈多证据表明能量摄入和耗能之间存在着高度的交叉联系,并经由复杂且协调的机理调控,最后作用于下丘脑、边缘、脑干以及其他的中枢神经系统,中枢用以调控食物摄入量和能量消耗[3]。代谢和生理能量需求以及“充足”能量储存的维持是决定食物摄入和非活动相关能量消耗的积极信号。益生菌可通过局部和整体,分别对肠道屏障、菌群、激素和神经传导的调控作用,影响消化、吸收、食欲以及能量摄入和消耗,从而影响肥胖[4]。
1.2. 益生菌调控肥胖的研究证据
随着本世纪以来研究中对肠道菌群与人体健康关系的益日重视,已有证据显示,益生菌在局部可通过在肠道调节菌群平衡、在全身通过“肠-脑轴”等发挥作用、干预影响与糖代谢相关的代谢物和关键酶、参与脂肪分解、合成、参与糖-脂转化的几乎全过程、降低全身慢性炎症等机制改善肥胖;通过组合关键词如“肥胖”、“肠道菌群”、“益生菌”、“糖代谢”、“脂肪分解合成”、“肠-脑轴”等,在PubMed数据库中进行广泛检索,选取近3年的临床研究,在获取到初步检索结果后,根据文献标题、摘要及全文内容进行了严格的筛选和评估。排除了与主题不直接相关、研究方法不严谨或结果可信度不高的文献,只保留了那些高质量的临床研究论文。通过上述检索方式,能够系统地获取到近3年来关于肥胖与肠道菌群、益生菌关系的最新临床研究证据,分别从人群研究和动物实验总结益生菌调控肥胖的研究证据(表1-2)。
表1.
人群研究中益生菌对肥胖的调控证据
Table 1 Evidence for the modulation of obesity by probiotics in population studies
| 菌种类 | 样本例数 | 研究种类 | 剂量及时间 | 研究结论 | 潜在机制 | 研究潜力 |
|---|---|---|---|---|---|---|
|
乳杆菌 HY7601 和植物乳杆菌 KY1032[5] 戊糖乳杆菌LPG1[6] LMT1-48[7] CCFM1025[8] |
72 39 100 45 |
随机双盲对照 随机单盲对照 随机双盲对照 随机双盲对照 |
5×109 CFU/day干预12周 1×1010 CFU/day干预30天 1×1010 CFU/day干预12周 1×1010 CFU/day干预4周 |
HY7601和KY1032通过调节肠道菌群组成发挥抗肥胖作用,对超重受试者的体重、体脂和腰臀围有有益的影响; LPG1具备治疗肥胖的潜力,还可以缓解轻度抑郁症,并对相关的胃肠道疾病起到积极的改善作用。 |
益生菌调节肠道微生物群参与“肠-脑轴”和“肠-肝轴”内的系统性多器官通信网络。 |
(1)针对肠道微生物群的干预可能会减轻与中枢和外周代谢紊乱相关的葡萄糖耐量和胰岛素敏感性降低 (2)通过益生菌干预操纵肠道微生物群,对减轻肥胖和肥胖相关疾病具有巨大的治疗潜力 |
|
益生菌胶囊(LactoLevureR)[9] 克氏芽孢杆菌[10] |
91 20 |
随机双盲 观察性研究 |
5.5×109 CFU/day 干预24周 4×109 CFU/day干预12周 |
在T2D患者中使用益生菌耐受性良好,并对血糖和脂质参数产生积极影响。 | 益生菌干预影响与糖代谢相关的代谢物和关键酶。 | 多菌株益生菌在血糖控制和降低糖尿病相关并发症风险,值得继续研究。 |
|
BB536和MCC1274[11]; SKO-001[12]; 酵乳杆菌MG4231和MG4244(1:1)的混合物MED-02[13] 鼠李糖乳杆菌、加氏乳杆菌、唾液乳杆菌、乳酸双歧杆菌、长双歧杆菌、短双歧杆菌、婴儿双歧杆菌[14] |
100 100 100 63 |
随机平行组安慰剂对照实验 随机双盲 随机双盲 随机双盲 |
5×109 CFU/day 干预16周 2×1010 CFU/day 干预12周 5×109 CFU/day干预12周 37×109 CFU/day干预12周 |
益生菌菌株的代谢产物可能通过调节前脂肪细胞成熟的PPARγ的表达和脂肪生成相关因子FAS、aP2、LPL 直接影响体脂组成。 |
益生菌通过激素调节和参与脂代谢 | 益生菌调节脂代谢的具体信号通路及作用过程需进一步深入研究。 |
|
MCP® BCMC® strains[15] 乳酸杆菌和双歧杆菌的多菌株益生菌[16] 益生菌化合物 AB001[17] |
90 76 81 |
随机双盲 随机双盲 随机双盲 |
2×1010 CFU/day 干预12周 1×109 CFU/day 干预8周 5.2×106 CFU/day 干预12周 |
多菌株益生菌诱导肠道微生物群产生有益变化,包括减轻体重、减少内脏脂肪,减少与脂肪堆积相关的全身炎症状态。 | 益生菌降低慢性低度炎症 | 能有效发挥减重作用的益生菌菌株种类、复合菌种的优化组合及有效浓度需进一步深入研究。 |
表2.
动物实验中益生菌对肥胖的调控证据
Table 2 Evidence for the modulation of obesity by probiotics in animal experiments
| 菌种类 | 剂量和时间 |
动物种类及 模型构建 |
研究结论 | 潜在机制 | 研究潜力 |
|---|---|---|---|---|---|
|
加氏乳杆菌LG-G12[18] 丁酸梭菌[19] |
1×109 CFU/day 干预4周 |
C57BL/6J小鼠高脂喂养3个月 C57BL/6J小鼠高脂喂养16周 |
益生菌通过肠道微生物群调节来改善肥胖模型小鼠。 | 益生菌干预肠道微生物组成 | 不同益生菌菌株在肠道内产生的效果和作用机制,以及不同益生菌在不同宿主中的适用性需要进一步研究。 |
|
F.prausnitzii [20] 唾液乳杆菌LS7892和加氏乳杆菌LG6410菌株[21] |
1×108 CFU/day 干预12周 2×106 CFU/day 干预44天 |
C57BL/6J 高脂饮食12周 C57BL/6J 高蔗糖饮食44天 |
肥胖小鼠微生物群代谢能力降低会刺激肠道通透性升高而通过新型益生菌疗法可以逆转这些异常。 | 益生菌可降低肠道通透性。 | 肠道微生物群如何在肠道中诱导细胞旁通透性与跨细胞通透性需要进一步研究。 |
|
CECT9879 (pA1c)[22] 酸性片球菌pA1c[23] F.prausnitzii[24] |
1×1010 CFU/day 干预12周 1×1010 CFU/day 干预12周 1×107 CFU/day 干预2周 |
C57BL/6J 高脂饮食12周 C57BL/6J 高脂饮食12周 C57BL/6J从// 高脂饮食2周 |
益生菌改善了HFD诱导的 T2D 衍生的胰岛素抵抗和肠道组织学,可降低小鼠的血糖水平,降低HbA1c百分比,并改善葡萄糖反应,并防止体重增加。 | 益生菌干预影响糖代谢,减轻胰岛素抵抗。 | 益生菌发挥其糖尿病缓解作用的生物分子机制需进一步研究 |
|
嗜粘蛋白阿克曼氏菌[25] pA1c®[26] |
2×108 CFU/day 干预4周 |
C57BL/6J 高脂饮食12周 Wistar 高脂饮食4周 |
益生菌可激活脂肪组织和肝脏中的脂肪酸β氧化,保护宿主免受急性脂质负荷诱导的乳糜微粒和VLDL的过度产生。 | 益生菌干预影响脂代谢,助于脂质稳态。 | 乳糜微粒代谢和脂多糖从饮食来源或从定居的肠道细菌的吸收之间的关联需要进一步研究。 |
|
植物乳杆菌FRT4[27] 植物乳杆菌LMT1-48[28] 鼠李糖菌HL-200[29] |
1×1010CFU/day 干预8周 1×1011CFU/day 干预8周 |
C57BL/6J、高脂饮食8周 C57BL/6J、高脂饮食8周 C57BL/6J 高脂饮食8周 |
植物乳杆菌FRT4对HFD诱导的肥胖小鼠,可以作为预防肥胖的潜在功能性食品。 摄入植物乳杆菌LMT1-48可防止大肠杆菌诱导的肥胖症的发生。 |
益生菌影响慢性炎症 | 微生物群与宿主之间相互作用机制需要进一步研究。 |
2. 肠道微生态的组成与功能
肠道微生态主要由数以万亿计的微生物组成,包括细菌、真菌、病毒和原生生物等。其中,细菌是最主要的组成部分,占据了肠道微生物总量的99%以上。因此肠道菌群对健康至关重要。细菌也包括有益菌、中性菌和有害菌三大类。近年来,肠道菌群与免疫系统间的紧密联系备受关注,肠道微环境受菌群及其产物影响,对免疫功能有显著作用,而特定疾病也会调节菌群组成。这种相互作用频繁发生,且可通过益生菌或微生物群移植重建肠道微环境,校准免疫稳态,有助于疾病的治疗或改善[30]。肠道作为抗原和微生物的接触点,拥有独特的区域免疫特征,由成熟的肠黏膜免疫系统维护[31]。肠道粘膜屏障由上皮细胞和粘液层构成,是抵御病原体的首道防线[32]。结肠黏液层分为内外两层,内层紧密附着于上皮细胞,外层则是共生菌的栖息地[33]。一旦黏液层受损,肠道微生物群易侵入内部,导致细菌定植和上皮侵蚀增加。粘液层中的多种物质,如粘蛋白、抗菌肽等,为肠道提供物理、生物化学和免疫保护[34]。上皮细胞层则负责选择性吸收营养,同时作为屏障防止管腔内容物的渗透,其间的紧密连接成为保护肠道的关键[35]。益生菌与后生元/类生元:指益生菌在失活后仍能发挥作用的代谢物以及细菌化学成份,具有调节人体抵抗力、调整消化道菌群和维持胃肠屏障健康等的保健功效[36]。后生元/类生元在肠道中的代谢动力学、发挥作用的量效关系,需要进一步研究。
3. 益生菌与肠道菌群的相互作用机制
益生菌与肠道菌群的相互作用是一个复杂的过程,其机制主要包括:1)竞争营养物质:益生菌与有害菌竞争营养物质,如碳水化合物、氨基酸等,从而抑制有害菌的生长[37]。2)产生抗菌物质:益生菌能够产生多种抗菌物质,如有机酸、过氧化氢、细菌素等,对有害菌产生抑制作用[38]。3)占位效应:益生菌能够黏附于肠黏膜表面,形成一层保护层,阻止有害菌的入侵[39]。4)调节免疫应答[40]。
以肠道为突出代表的全身慢性广泛性低度炎症引起的肥胖,有学者称之为“炎症型肥胖”[41]。过量的葡萄糖、游离脂肪酸和氨基酸等营养物质,或不健康的饮食构成、胆汁酸、过敏原、应激、肠道菌群及其代谢产物短链脂肪酸和肥胖本身等均会改变肠道屏障功能[42-43],表现为肠黏膜通透性增强和机械屏障功能障碍,允许内毒素等有害物质进入循环,引发肠道细胞损伤和炎症反应。肠上皮功能障碍破坏上皮排列,导致细胞间隙异常开放,肠道通透性升高[44-45],引起免疫应答。紧密连接蛋白,如闭锁 区-1(zona occludens-1,ZO-1)作为连接复合体重要成分,维持上皮单层完整性[46]。益生菌通过不同的机制调控上皮细胞、树突状细胞(dendritic cell,DCs)、单核细胞、巨噬细胞和淋巴细胞。上皮细胞可能通过产生细胞因子和信号转导感知和区分共生菌或致病菌的形式。在肠内,DCs促进耐受,产生IL-10 (Interleukin-10)和TGF(Transforming Growth Factor),诱导调节性T细胞和产生IgA(Immunoglobulin A)的B细胞[47]。此外,肠树突状细胞通过上皮紧密连接与腔内细菌相互作用,并通过M细胞与获得营养物质的细菌相互作用[48]。屏障受损时,微生物渗透肠上皮,DCs引导免疫反应,诱导IgA反应[49]。单核细胞和巨噬细胞都是记忆T细胞抗原的第二有效呈递者[50]。研究[51]发现干酪乳杆菌菌株Shirota通过增加TLR3 (Toll-like receptor 3)和TLR5 (Toll-like receptor 5)配体以及TLR2 (Toll-like receptor 2)、TLR4 (Toll-like receptor 4)、TLR7 (Toll-like receptor 7)和TLR9 (Toll-like receptor 9)配体修饰巨噬细胞产生IL-12和IL-10,表明益生菌可灵活调控IL-10/IL-12(Interleukin-12)。益生菌通过PI3K/Akt通路阻断有害的IL-8(Interleukin-8)和NOD1炎症作用,增强hBD-2 (human β-defensin 2)细菌清除[52],在铜绿假单胞菌感染的内皮细胞中相互调节IL-8和人类防御素2 hBD-2的表达,增强肠道黏膜的抗菌肽分泌,以防御感染,减少有害炎症,减少病原体的易位[53]。因此综上,补充益生菌发挥免疫调节剂作用具有较广阔的临床应用潜力。
4. 益生菌通过多元神经免疫通路影响能量平衡减轻肥胖
4.1. “肠-脑轴”的调节作用
除了在肠道局部发挥作用,肠道微生物群还与中枢神经系统之间产生复杂相互交连,典型的“肠-脑轴”(Gut-Brain Axis, GBA)为例,是一种双向、涉及神经、内分泌和免疫途径的双向调节系统[54]。GBA通过三条主要途径影响生理功能和行为调控:神经通路,依赖于肠神经系统(Enteric Nervous System, ENS)和迷走神经的神经信号传递;内分泌通路,通过调节大脑的神经内分泌系统,特别是与能量平衡密切相关的下丘脑-垂体-肾上腺轴(Hypothalamic-Pituitary-Adrenal,HPA);以及免疫通路,肠道微生物的改变能够影响免疫反应和炎症状态,从而影响机体的代谢反应[55-56]。其中HPA也可看做是大脑对肠道的另一种重要调节途径,调节胃肠道功能的主要机制之一。对胃肠道功能产生深远影响,包括消化动力、分泌、免疫反应、调节肠道运动、肠道屏障的完整性、肠道免疫反应和微生物群落的结构以及微生物群落的动态平衡与基因表达模式的调节[57-59]。肠道环境的微小变化能够触发微生物群落的结构和功能重塑,进而影响机体的整体生理状态。
GBA的复杂调节机制为开发新兴的干预策略提供了潜在靶点。例如,通过调节肠道微生物群落的结构和功能,可以改善机体的葡萄糖代谢和肝功能。此外,通过调节HPA 轴的激活,可以减轻疾病相关的压力和疼痛,并缓解相关的情绪和行为变化。高脂肪饮食可以导致肠道微生物群落的变化,从而影响胰岛素的分泌和葡萄糖代谢。此外,肠道微生物群落的变化也可能影响肝功能,例如,某些微生物的增殖可能导致肝炎或肝纤维化。肠道微生物群落的某些特定变化,如失调或特定菌群的增殖,通过肠脑轴可能调节能量代谢途径和饮食行为调控,从而导致肥胖的发生。新兴的治疗策略,如粪菌移植和益生菌及益生元补充,因其潜在的靶向肠道微生物群落的特性,是治疗肥胖症的前沿策略。深入理解GBA的复杂作用机制对于开发个性化和精准的肥胖干预措施具有重要意义。
4.2. 重构微生态,改善肠道内环境
益生菌通过调整肠道微生态,如改善肠道渗透性、修复肠道屏障功能,以及增强肠道蠕动,影响营养物质的吸收和代谢。具体的,益生菌通过竞争性排斥机制,与肠道内的有害微生物竞争受体位点,抑制其附着和生长,限制有害菌的附着和生长,维持肠道微生物菌群的稳定性[60]。其次,益生菌代谢产物如乳酸、短链脂肪酸等有机酸的生成,不仅为肠道细胞提供能量和营养,还调节肠道环境的酸碱平衡,抑制有害菌的生长繁殖[61]。此外,益生菌还通过激活肠道免疫系统,激活免疫细胞,促进免疫因子的产生,增强肠道黏膜屏障功能,增强肠道免疫功能,减少有害物质和病原体的侵入,降低肠道炎症反应[15, 62];益生菌还能强化肠道屏障,促进肠道黏膜细胞间的连接,增加屏障的完整性,阻止有害物质的渗透。最后,益生菌参与多糖的代谢,释放出有益的代谢产物,提高食物的利用率,还能促进脂肪组织酶活性和肠道内营养物质的吸收,如铁、钙和维生素D,促进肠道内营养物质的吸收,间接影响能量平衡[7]。
5. 挑战与展望
近年来,益生菌在临床应用中的潜力日益被深入发掘。一系列前沿研究揭示了益生菌通过调控肠道微生物群落、调节免疫应答以及优化肠道屏障功能等多元途径,对“肠-脑轴”、“肠-肝轴”以及“肠-肺轴”产生深远影响,对相关疾病具有潜在干预作用。然而,尽管现有研究积累了较丰富的观察,但仍缺乏一个完整的研究框架和对这些生理过程的深入机制解析。
在该领域,潜在研究方向包括:(1)探索不同种类和剂量的益生菌对肠道菌群的影响,科学补充益生菌是指根据个人肠道微生态评估,选用合适的益生菌菌株及剂量,合理补充以优化肠道菌群结构、促进肠道健康。此过程遵循循证医学原则,确保益生菌质量,并考虑宿主-微生物相互作用,实现精准医疗与健康管理。(2)进一步探究益生菌如何通过调节肠道免疫系统来影响肠道菌群,从而减轻慢性炎症和肥胖;(3)益生菌对肥胖相关代谢疾病如2型糖尿病、脂质代谢紊乱等的影响,探讨其在整体代谢调节中的作用。而同时,免疫系统在肠道菌群调节中扮演重要角色,但其机制复杂多样,需要深入研究以找到准确的调节方法。不同种类的益生菌可能对不同人群产生不同效果,以及不同个体对益生菌的反应的差异,如何实现益生菌对肥胖的长期有效性、个性化的治疗策略均是未来研究将面临的挑战。
随着多组学技术和数据挖掘技术的飞速进步,越来越多的研究正采用更为全面的策略,致力于筛选和解析具有卓越特性的益生菌株,并探究它们在疾病发病过程中的生物作用机制。通过深入研究益生菌在免疫调节肠道菌群减重中的作用机制,可以为慢性炎症性肥胖的治疗提供新思路和方法。
基金资助
内蒙古自治区自然科学基金(2024MS08018);内蒙古自治区高等学校科学研究项目(NJZY21058)。
This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region top-level project (2024MS08018) and the Scientific Research Project of Higher Education Institutions in Inner Mongolia Autonomous Region (NJZY21058)
利益冲突声明
作者声称无任何利益冲突。
作者贡献
张宇诺 论文撰写与修改,数据采集、分析;王玮 论文设计、修改及论文指导。所有作者阅读并同意最终的文本。
Footnotes
http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2024.240361
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2024071042.pdf
参考文献
- 1. 中华医学会内分泌学分会 . 肥胖患者的长期体重管理及药物临床应用指南(2024版)[J]. 中华内分泌代谢杂志, 2024, 40(7): 545-564. 10.3760/cma.j.cn311282-20240412-00149. [DOI] [Google Scholar]; Chinese Medical Association Endocrinology Branch . Guideline for chronic weight management and clinical practice of anti-obesity medications(2024 version)[J]. Chinese Journal of Endocrinology and Metabolism, 2024, 40(7): 545-564. 10.3760/cma.j.cn311282-20240412-00149. [DOI] [Google Scholar]
- 2. Perdomo CM, Cohen RV, Sumithran P, et al. Contemporary medical, device, and surgical therapies for obesity in adults[J]. Lancet, 2023, 401(10382): 1116-1130. 10.1016/S0140-6736(22)02403-5. [DOI] [PubMed] [Google Scholar]
- 3. Faccioli N, Poitou C, Clément K, et al. Current treatments for patients with genetic obesity[J]. J Clin Res Pediatr Endocrinol, 2023, 15(2): 108-119. 10.4274/jcrpe.galenos.2023.2023-3-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Geng JF, Ni QQ, Sun W, et al. The links between gut microbiota and obesity and obesity related diseases[J]. Biomed Pharmacother, 2022, 147: 112678. 10.1016/j.biopha.2022.112678. [DOI] [PubMed] [Google Scholar]
- 5. Mo SJ, Lee K, Hong HJ, et al. Effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 on overweight and the gut microbiota in humans: randomized, double-blinded, placebo-controlled clinical trial[J]. Nutrients, 2022, 14(12): 2484. 10.3390/nu14122484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. López-García E, Benítez-Cabello A, Arenas-de Larriva AP, et al. Oral intake of Lactiplantibacillus pentosus LPG1 produces a beneficial regulation of gut microbiota in healthy persons: a randomised, placebo-controlled, single-blind trial[J]. Nutrients, 2023, 15(8): 1931. 10.3390/nu15081931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Sohn M, Jung H, Lee WS, et al. Effect of Lactobacillus plantarum LMT1-48 on body fat in overweight subjects: a randomized, double-blind, placebo-controlled trial[J]. Diabetes Metab J, 2023, 47(1): 92-103. 10.4093/dmj.2021.0370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Tian PJ, Chen Y, Zhu HY, et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: a randomized clinical trial[J]. Brain Behav Immun, 2022, 100: 233-241. 10.1016/j.bbi.2021.11.023. [DOI] [PubMed] [Google Scholar]
- 9. Zikou E, Dovrolis N, Dimosthenopoulos C, et al. The effect of probiotic supplements on metabolic parameters of people with type 2 diabetes in Greece-a randomized, double-blind, placebo-controlled study[J]. Nutrients, 2023, 15(21): 4663. 10.3390/nu15214663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Ziegler MC, Garbim Junior EE, Jahnke VS, et al. Impact of probiotic supplementation in a patient with type 2 diabetes on glycemic and lipid profile[J]. Clin Nutr ESPEN, 2022, 49: 264-269. 10.1016/j.clnesp.2022.04.002. [DOI] [PubMed] [Google Scholar]
- 11. Sato S, Arai S, Kato K, et al. Effects of Bifidobacterium longum BB536 and Bifidobacterium breve MCC1274 on body composition in normal and overweight adults in randomized placebo-controlled study[J]. Nutrients, 2024, 16(6): 815. 10.3390/nu16060815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Shin SM, Park JS, Kim SB, et al. A 12-week, single-centre, randomised, double-blind, placebo-controlled, parallel-design clinical trial for the evaluation of the efficacy and safety of Lactiplantibacillus plantarum SKO-001 in reducing body fat[J]. Nutrients, 2024, 16(8): 1137. 10.3390/nu16081137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Cho YG, Yang YJ, Yoon YS, et al. Effect of MED-02 containing two probiotic strains, Limosilactobacillus fermentum MG4231 and MG4244, on body fat reduction in overweight or obese subjects: a randomized, multicenter, double-blind, placebo-controlled study[J]. Nutrients, 2022, 14(17): 3583. 10.3390/nu14173583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Oraphruek P, Chusak C, Ngamukote S, et al. Effect of a multispecies synbiotic supplementation on body composition, antioxidant status, and gut microbiomes in overweight and obese subjects: a randomized, double-blind, placebo-controlled study[J]. Nutrients, 2023, 15(8): 1863. 10.3390/nu15081863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Almalki SM, Al-Daghri NM, Al-Juhani ME, et al. Effect of multi-strain probiotics as an anti-obesity among overweight and obese Saudi adults[J]. Medicine, 2023, 102(16): e33245. 10.1097/MD.0000000000033245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Kopp L, Schweinlin A, Tingö LN, et al. Potential modulation of inflammation and physical function by combined probiotics, omega-3 supplementation and vitamin D supplementation in overweight/obese patients with chronic low-grade inflammation: a randomized, placebo-controlled trial[J]. Int J Mol Sci, 2023, 24(10): 8567. 10.3390/ijms24108567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Danielsson P, Putri RR, Marcus C, et al. Evaluating probiotic efficacy on weight loss in adults with overweight through a double-blind, placebo-controlled randomized trial[J]. Sci Rep, 2023, 13(1): 18200. 10.1038/s41598-023-45395-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. de Moura E Dias M, da Silva Duarte V, Mota LFM, et al. Lactobacillus gasseri LG-G12 restores gut microbiota and intestinal health in obesity mice on ceftriaxone therapy[J]. Foods, 2023, 12(5): 1092. 10.3390/foods12051092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Li L, Chen JH, Sun HM, et al. Orm2 deficiency aggravates high-fat diet-induced obesity through gut microbial dysbiosis and intestinal inflammation[J]. Mol Nutr Food Res, 2024, 68(1): e2300236. 10.1002/mnfr.202300236. [DOI] [PubMed] [Google Scholar]
- 20. Yang M, Wang JH, Shin JH, et al. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice[J]. Front Endocrinol, 2023, 14: 1220044. 10.3389/fendo.2023.1220044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Nicol M, Lahaye E, El Mehdi M, et al. Lactobacillus salivarius and Lactobacillus gasseri supplementation reduces stress-induced sugar craving in mice[J]. Eur Eat Disord Rev, 2024, 32(6): 1041-1054. 10.1002/erv.3004. [DOI] [PubMed] [Google Scholar]
- 22. Yavorov-Dayliev D, Milagro FI, Ayo J, et al. Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice[J]. Diabetologia, 2023, 66(11): 2117-2138. 10.1007/s00125-023-05981-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Cabello-Olmo M, Oneca M, Pajares MJ, et al. Antidiabetic effects of Pediococcus acidilactici pA1c on HFD-induced mice[J]. Nutrients, 2022, 14(3): 692. 10.3390/nu14030692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Kallassy J, Gagnon E, Rosenberg D, et al. Strains of Faecalibacterium prausnitzii and its extracts reduce blood glucose levels, percent HbA1c, and improve glucose tolerance without causing hypoglycemic side effects in diabetic and prediabetic mice[J]. BMJ Open Diabetes Res Care, 2023, 11(3): e003101. 10.1136/bmjdrc-2022-003101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Shen J, Tong XD, Sud N, et al. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia[J]. Arterioscler Thromb Vasc Biol, 2016, 36(7): 1448-1456. 10.1161/ATVBAHA.116.307597. [DOI] [PubMed] [Google Scholar]
- 26. Yavorov-Dayliev D, Milagro FI, López-Yoldi M, et al. Pediococcus acidilactici (pA1c®) alleviates obesity-related dyslipidemia and inflammation in Wistar rats by activating beta-oxidation and modulating the gut microbiota[J]. Food Funct, 2023, 14(24): 10855-10867. 10.1039/d3fo01651j. [DOI] [PubMed] [Google Scholar]
- 27. Cai HY, Wen ZG, Zhao LL, et al. Lactobacillus plantarum FRT4 alleviated obesity by modulating gut microbiota and liver metabolome in high-fat diet-induced obese mice[J]. Food Nutr Res, 2022, 66: 66. 10.29219/fnr.v66.7974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Choi WJ, Dong HJ, Jeong HU, et al. Antiobesity effects of Lactobacillus plantarum LMT1-48 accompanied by inhibition of Enterobacter cloacae in the intestine of diet-induced obese mice[J]. J Med Food, 2019, 22(6): 560-566. 10.1089/jmf.2018.4329. [DOI] [PubMed] [Google Scholar]
- 29. Mishra SP, Wang B, Jain S, et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut[J]. Gut, 2023, 72(10): 1848-1865. 10.1136/gutjnl-2022-327365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Zhou BL, Yuan YT, Zhang SS, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Front Immunol, 2020, 11: 575. 10.3389/fimmu.2020.00575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Perez-Lopez A, Behnsen J, Nuccio SP, et al. Mucosal immunity to pathogenic intestinal bacteria[J]. Nat Rev Immunol, 2016, 16(3): 135-148. 10.1038/nri.2015.17. [DOI] [PubMed] [Google Scholar]
- 32. Cai R, Cheng C, Chen JW, et al. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon[J]. Gut Microbes, 2020, 11(4): 680-690. 10.1080/19490976.2020.1735606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Johansson MEV, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions[J]. Proc Natl Acad Sci USA, 2011, 108(Suppl 1): 4659-4665. 10.1073/pnas.1006451107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress[J]. Curr Gastroenterol Rep, 2010, 12(5): 319-330. 10.1007/s11894-010-0131-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Jadhav K, Cohen TS. Can you trust your gut? implicating a disrupted intestinal microbiome in the progression of NAFLD/NASH[J]. Front Endocrinol, 2020, 11: 592157. 10.3389/fendo.2020.592157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Nataraj BH, Ali SA, Behare PV, et al. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods[J]. Microb Cell Fact, 2020, 19(1): 168. 10.1186/s12934-020-01426-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. El-Saadony MT, Salem HM, El-Tahan AM, et al. The control of poultry salmonellosis using organic agents: an updated overview[J]. Poult Sci, 2022, 101(4): 101716. 10.1016/j.psj.2022.101716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. 钟丹, 罗国升, 朱攀学, et al. 益生菌的抗生物膜活性及其对肠道健康的影响 [J]. 家畜生态学报: 1-7. https://link.cnki.net/urlid/61.1433.S.20240517.1051.010 [Google Scholar]; ZHONG Dan, Luo Guosheng, Zhu Panxue, et al. Anti-biofilm activity of probiotics and its effect on intestinal health [J]. Journal of Livestock Ecology: 1-7 https://link.cnki.net/urlid/61.1433.S.20240517.1051.010 [Google Scholar]
- 39. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature, 2011, 469(7331): 543-547. 10.1038/nature09646. [DOI] [PubMed] [Google Scholar]
- 40. Wang QW, Jia DJ, He JM, et al. Lactobacillus intestinalis primes epithelial cells to suppress colitis-related Th17 response by host-microbe retinoic acid biosynthesis[J]. Adv Sci, 2023, 10(36): e2303457. 10.1002/advs.202303457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Schleh MW, Caslin HL, Garcia JN, et al. Metaflammation in obesity and its therapeutic targeting[J]. Sci Transl Med, 2023, 15(723): eadf9382. 10.1126/scitranslmed.adf9382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat?[J]. Clin Gastroenterol Hepatol, 2013, 11(9): 1075-1083. 10.1016/j.cgh.2013.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Hansen HS, Moesby L, Timm M, et al. Comment on: Harteet Al. high fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. diabetes care 2012;35: 375-382[J]. Diabetes Care, 2013, 36(3): e42. 10.2337/dc12-0813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Kim KA, Gu W, Lee IA, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway[J]. PLoS One, 2012, 7(10): e47713. 10.1371/journal.pone.0047713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. 张西, 石汉平. 肠漏的机制及临床意义[J]. 肿瘤代谢与营养电子杂志, 2020, 7(1): 131-136. 10.16689/j.cnki.cn11-9349/r.2020.01.024. [DOI] [Google Scholar]; ZHANG Xi, SHI Hanping. Leaky gut: mechanisms and clinical implications[J]. Electronic Journal of Metabolism and Nutrition of Cancer, 2020, 7(1): 131-136. 10.16689/j.cnki.cn11-9349/r.2020.01.024. [DOI] [Google Scholar]
- 46. Mohamad Nor MH, Ayob N, Mokhtar NM, et al. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients, 2021, 13(9): 3192. 10.3390/nu13093192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Sun T, Nguyen A, Gommerman JL. Dendritic cell subsets in intestinal immunity and inflammation[J]. J Immunol, 2020, 204(5): 1075-1083. 10.4049/jimmunol.1900710. [DOI] [PubMed] [Google Scholar]
- 48. Gutiérrez-Ballesteros F, Morales-Reyes J, Fernández D, et al. Normal tissue homeostasis and impairment of selective inflammatory responses in dendritic cells deficient for ATF6α[J]. Front Cell Dev Biol, 2023, 11: 1089728. 10.3389/fcell.2023.1089728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Cristofori F, Dargenio VN, Dargenio C, et al. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body[J]. Front Immunol, 2021, 12: 578386. 10.3389/fimmu.2021.578386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Shan YM, Kong YH, Zhou Y, et al. Decreased expression of programmed death-1 on CD8+ effector memory T lymphocytes correlates with the pathogenesis of type 1 diabetes[J]. Acta Diabetol, 2021, 58(9): 1239-1249. 10.1007/s00592-021-01711-z. [DOI] [PubMed] [Google Scholar]
- 51. Rumi KJ, Kiyoshima-Shibata J, Tsujibe S, et al. Short communication: Probiotic induction of interleukin-10 and interleukin-12 production by macrophages is modulated by co-stimulation with microbial components[J]. J Dairy Sci, 2018, 101(4): 2838-2841. 10.3168/jds.2017-13868. [DOI] [PubMed] [Google Scholar]
- 52. Huang FC. Differential regulation of interleukin-8 and human beta-defensin 2 in Pseudomonas aeruginosa-infected intestinal epithelial cells[J]. BMC Microbiol, 2014, 14: 275. 10.1186/s12866-014-0275-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Huang FC, Lu YT, Liao YH. Beneficial effect of probiotics on Pseudomonas aeruginosa-infected intestinal epithelial cells through inflammatory IL-8 and antimicrobial peptide human beta-defensin-2 modulation[J]. Innate Immun, 2020, 26(7): 592-600. 10.1177/1753425920959410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Jacobs JP, Gupta A, Bhatt RR, et al. Cognitive behavioral therapy for irritable bowel syndrome induces bidirectional alterations in the brain-gut-microbiome axis associated with gastrointestinal symptom improvement[J]. Microbiome, 2021, 9(1): 236. 10.1186/s40168-021-01188-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Tan S, Santolaya JL, Wright TF, et al. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism[J]. Nat Metab, 2024, 6(6): 1076-1091. 10.1038/s42255-024-01044-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571): 1087-1092. 10.1126/science.abi6087. [DOI] [PubMed] [Google Scholar]
- 57. Fan SJ, Guo WW, Xiao D, et al. Microbiota-gut-brain axis drives overeating disorders[J]. Cell Metab, 2023, 35(11): 2011-2027.e7. 10.1016/j.cmet.2023.09.005. [DOI] [PubMed] [Google Scholar]
- 58. Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases[J]. Signal Transduct Target Ther, 2024, 9(1): 37. 10.1038/s41392-024-01743-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021, 18(23): 12836. 10.3390/ijerph182312836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Snigdha S, Ha K, Tsai P, et al. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan[J]. Pharmacol Ther, 2022, 231: 107978. 10.1016/j.pharmthera.2021.107978. [DOI] [PubMed] [Google Scholar]
- 61. Mazziotta C, Tognon M, Martini F, et al. Probiotics mechanism of action on immune cells and beneficial effects on human health[J]. Cells, 2023, 12(1): 184. 10.3390/cells12010184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Karakula-Juchnowicz H, Rog J, Juchnowicz D, et al. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): a 12-week, randomized, double-blind, and placebo-controlled clinical study protocol[J]. Nutr J, 2019, 18(1): 50. 10.1186/s12937-019-0475-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
