Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):115–119. doi: 10.1042/bj2740115

Surfactant protein composition of lamellar bodies isolated from rat lung.

M A Oosterlaken-Dijksterhuis 1, M van Eijk 1, B L van Buel 1, L M van Golde 1, H P Haagsman 1
PMCID: PMC1149928  PMID: 2001226

Abstract

Lamellar bodies isolated from rat lung contain all three classes of surfactant proteins, SP-A, SP-B and SP-C, as determined by immunoblot analysis. The amounts of the surfactant proteins present in lamellar bodies, determined by sandwich e.l.i.s.a. (SP-A) and fluorescamine assay (SP-B and SP-C) show that these organelles are highly enriched in the hydrophobic surfactant proteins SP-B and SP-C.

Full text

PDF
119

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arjomaa P., Hallman M. Purification of a hydrophobic surfactant peptide using high-performance liquid chromatography. Anal Biochem. 1988 May 15;171(1):207–212. doi: 10.1016/0003-2697(88)90143-1. [DOI] [PubMed] [Google Scholar]
  2. Askin F. B., Kuhn C. The cellular origin of pulmonary surfactant. Lab Invest. 1971 Sep;25(3):260–268. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Ballard P. L., Liley H. G., Gonzales L. W., Odom M. W., Ammann A. J., Benson B., White R. T., Williams M. C. Interferon-gamma and synthesis of surfactant components by cultured human fetal lung. Am J Respir Cell Mol Biol. 1990 Feb;2(2):137–143. doi: 10.1165/ajrcmb/2.2.137. [DOI] [PubMed] [Google Scholar]
  6. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  7. Carter R. J., Boyd N. D. A comparison of methods for obtaining high yields of pure immunoglobulin from severely haemolysed plasma. J Immunol Methods. 1979;26(3):213–232. doi: 10.1016/0022-1759(79)90246-1. [DOI] [PubMed] [Google Scholar]
  8. Chevalier G., Collet A. J. In vivo incorporation of choline- 3 H, leucine- 3 H and galactose- 3 H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radoautographic study in mouse by electron microscopy. Anat Rec. 1972 Nov;174(3):289–310. doi: 10.1002/ar.1091740303. [DOI] [PubMed] [Google Scholar]
  9. Chung J., Yu S. H., Whitsett J. A., Harding P. G., Possmayer F. Effect of surfactant-associated protein-A (SP-A) on the activity of lipid extract surfactant. Biochim Biophys Acta. 1989 Apr 26;1002(3):348–358. doi: 10.1016/0005-2760(89)90349-4. [DOI] [PubMed] [Google Scholar]
  10. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dobbs L. G., Wright J. R., Hawgood S., Gonzalez R., Venstrom K., Nellenbogen J. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1010–1014. doi: 10.1073/pnas.84.4.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duck-Chong C. G. The isolation of lamellar bodies and their membranous content from rat lung, lamb tracheal fluid and human amniotic fluid. Life Sci. 1978 Jun 12;22(22):2025–2030. doi: 10.1016/0024-3205(78)90549-0. [DOI] [PubMed] [Google Scholar]
  13. Engle M. J., Sanders R. L., Longmore W. J. Phospholipid composition and acyltransferase activity of lamellar bodies isolated from rat lung. Arch Biochem Biophys. 1976 Apr;173(2):586–595. doi: 10.1016/0003-9861(76)90295-2. [DOI] [PubMed] [Google Scholar]
  14. Gil J., Reiss O. K. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J Cell Biol. 1973 Jul;58(1):152–171. doi: 10.1083/jcb.58.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
  16. Hallman M., Gluck L. Phosphatidylglycerol in lung surfactant. II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochim Biophys Acta. 1975 Nov 21;409(2):172–191. doi: 10.1016/0005-2760(75)90152-6. [DOI] [PubMed] [Google Scholar]
  17. Hallman M., Miyai K., Wagner R. M. Isolated lamellar bodies from rat lung: correlated ultrastructural and biochemical studies. Lab Invest. 1976 Jul;35(1):79–86. [PubMed] [Google Scholar]
  18. Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
  19. Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hawgood S. Pulmonary surfactant apoproteins: a review of protein and genomic structure. Am J Physiol. 1989 Aug;257(2 Pt 1):L13–L22. doi: 10.1152/ajplung.1989.257.2.L13. [DOI] [PubMed] [Google Scholar]
  21. Kuroki Y., Mason R. J., Voelker D. R. Pulmonary surfactant apoprotein A structure and modulation of surfactant secretion by rat alveolar type II cells. J Biol Chem. 1988 Mar 5;263(7):3388–3394. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Mason R. J., Nellenbogen J., Clements J. A. Isolation of disaturated phosphatidylcholine with osmium tetroxide. J Lipid Res. 1976 May;17(3):281–284. [PubMed] [Google Scholar]
  25. McMurray W. C. Lecithin biosynthesis in liver mitochondrial fractions. Biochem Biophys Res Commun. 1974 May 20;58(2):467–474. doi: 10.1016/0006-291x(74)90388-x. [DOI] [PubMed] [Google Scholar]
  26. O'Reilly M. A., Nogee L., Whitsett J. A. Requirement of the collagenous domain for carbohydrate processing and secretion of a surfactant protein, SP-A. Biochim Biophys Acta. 1988 Apr 25;969(2):176–184. doi: 10.1016/0167-4889(88)90073-0. [DOI] [PubMed] [Google Scholar]
  27. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  28. Phizackerley P. J., Town M. H., Newman G. E. Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung. Biochem J. 1979 Dec 1;183(3):731–736. doi: 10.1042/bj1830731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
  30. Possmayer F. A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis. 1988 Oct;138(4):990–998. doi: 10.1164/ajrccm/138.4.990. [DOI] [PubMed] [Google Scholar]
  31. Rice W. R., Ross G. F., Singleton F. M., Dingle S., Whitsett J. A. Surfactant-associated protein inhibits phospholipid secretion from type II cells. J Appl Physiol (1985) 1987 Aug;63(2):692–698. doi: 10.1152/jappl.1987.63.2.692. [DOI] [PubMed] [Google Scholar]
  32. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  33. Shelley S. A., Paciga J. E., Paterson J. F., Balis J. U. Ozone-induced alterations of lamellar body lipid and protein during alveolar injury and repair. Lipids. 1989 Sep;24(9):769–774. doi: 10.1007/BF02544582. [DOI] [PubMed] [Google Scholar]
  34. Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
  35. Takahashi A., Fujiwara T. Proteolipid in bovine lung surfactant: its role in surfactant function. Biochem Biophys Res Commun. 1986 Mar 13;135(2):527–532. doi: 10.1016/0006-291x(86)90026-4. [DOI] [PubMed] [Google Scholar]
  36. Tenner A. J., Robinson S. L., Borchelt J., Wright J. R. Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J Biol Chem. 1989 Aug 15;264(23):13923–13928. [PubMed] [Google Scholar]
  37. Warr R. G., Hawgood S., Buckley D. I., Crisp T. M., Schilling J., Benson B. J., Ballard P. L., Clements J. A., White R. T. Low molecular weight human pulmonary surfactant protein (SP5): isolation, characterization, and cDNA and amino acid sequences. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7915–7919. doi: 10.1073/pnas.84.22.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weaver T. E., Whitsett J. A. Processing of hydrophobic pulmonary surfactant protein B in rat type II cells. Am J Physiol. 1989 Aug;257(2 Pt 1):L100–L108. doi: 10.1152/ajplung.1989.257.2.L100. [DOI] [PubMed] [Google Scholar]
  39. Wright J. R., Wager R. E., Hamilton R. L., Huang M., Clements J. A. Uptake of lung surfactant subfractions into lamellar bodies of adult rabbit lungs. J Appl Physiol (1985) 1986 Mar;60(3):817–825. doi: 10.1152/jappl.1986.60.3.817. [DOI] [PubMed] [Google Scholar]
  40. Young S. L., Kremers S. A., Apple J. S., Crapo J. D., Brumley G. W. Rat lung surfactant kinetics biochemical and morphometric correlation. J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):248–253. doi: 10.1152/jappl.1981.51.2.248. [DOI] [PubMed] [Google Scholar]
  41. Yu S. H., Possmayer F. Comparative studies on the biophysical activities of the low-molecular-weight hydrophobic proteins purified from bovine pulmonary surfactant. Biochim Biophys Acta. 1988 Aug 12;961(3):337–350. doi: 10.1016/0005-2760(88)90081-1. [DOI] [PubMed] [Google Scholar]
  42. de Vries A. C., Schram A. W., Tager J. M., Batenburg J. J., van Golde L. M. A specific acid alpha-glucosidase in lamellar bodies of the human lung. Biochim Biophys Acta. 1985 Dec 4;837(3):230–238. doi: 10.1016/0005-2760(85)90046-3. [DOI] [PubMed] [Google Scholar]
  43. van Iwaarden F., Welmers B., Verhoef J., Haagsman H. P., van Golde L. M. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990 Jan;2(1):91–98. doi: 10.1165/ajrcmb/2.1.91. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES