Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):145–152. doi: 10.1042/bj2740145

Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

A M Bakken 1, M Farstad 1, H Holmsen 1
PMCID: PMC1149932  PMID: 1848073

Abstract

Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic acid inhibited the formation of [14C]arachidonoyl-CoA, and arachidonic acid inhibited the formation of [14C]palmitoyl-CoA, with [14C]arachidonate or [14C]palmitate respectively as substrate. After chromatography of Triton X-100-extracted platelet protein in several systems (hydroxyapatite, DEAE-Sepharose, Sephacryl S-200 HR, CoA-Sepharose, Sephadex G-100 and AcA 34), both arachidonoyl-CoA synthetase and palmitoyl-CoA synthetase activities were eluted together in the various protein peaks, and with approximately the same ratio of activities in all peaks. After some purification steps (DEAE-Sepharose and Sephacryl S-200 HR), the acyl-CoA synthetase activity was up to 37 nmol/min per mg of protein with [14C]palmitate as substrate, and up to 116 nmol/min per mg of protein with [14C]arachidonate as substrate. The purification was respectively about 8- and 10-fold. The results indicate that palmitoyl-CoA (or unspecific) synthetase and arachidonoyl-CoA (or specific) synthetase are in fact the same enzyme, in agreement with previously reported results from this laboratory.

Full text

PDF
152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bakken A. M., Farstad M. Identical subcellular distribution of palmitoyl-CoA and arachidonoyl-CoA synthetase activities in human blood platelets. Biochem J. 1989 Jul 1;261(1):71–76. doi: 10.1042/bj2610071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bar-Tana J., Rose G., Shapiro B. The purification and properties of microsomal palmitoyl-coenzyme A synthetase. Biochem J. 1971 Apr;122(3):353–362. doi: 10.1042/bj1220353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berge R. K., Farstad M. Hydrolysis of long-chain fatty acyl-CoA in homogenates of human blood platelets: the existence of a platelet palmitoyl-CoA hydrolase. Scand J Clin Lab Invest. 1978 Dec;38(8):699–706. doi: 10.1080/00365517809104876. [DOI] [PubMed] [Google Scholar]
  5. Berge R. K., Slinde E., Farstad M. Variations in the activity of microsomal palmitoyl-CoA hydrolase in mixed micelle solutions of palmitoyl-CoA and non-ionic detergents of the triton X series. Biochim Biophys Acta. 1981 Oct 23;666(1):25–35. doi: 10.1016/0005-2760(81)90087-4. [DOI] [PubMed] [Google Scholar]
  6. Berge R. K., Vollset S. E., Farstad M. Intracellular localization of palmitoyl-CoA hydrolase and palmitoyl-CoA synthetase in human blood platelets and liver. Scand J Clin Lab Invest. 1980 May;40(3):271–278. doi: 10.3109/00365518009095578. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Farstad M., Aas M., Sander J. Long-chain acyl-CoA synthetase activity in blood platelets and some human tissues. Scand J Clin Lab Invest. 1973 Mar;31(2):205–211. doi: 10.3109/00365517309084311. [DOI] [PubMed] [Google Scholar]
  9. Farstad M., Sander J. The existence of a long-chain acyl-CoA synthetase in homogenates of human blood platelets. Scand J Clin Lab Invest. 1971 Nov;28(3):261–265. doi: 10.3109/00365517109095698. [DOI] [PubMed] [Google Scholar]
  10. Hauser G., Eichberg J. Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol. J Biol Chem. 1975 Jan 10;250(1):105–112. [PubMed] [Google Scholar]
  11. Holmsen H., Ostvold A. C., Pimentel M. A. Enzymatic properties of 5'-AMP deaminase in platelet lysates. Thromb Haemost. 1977 Jun 30;37(3):380–395. [PubMed] [Google Scholar]
  12. Ingebretsen O. C., Bakken A. M., Farstad M. The content of coenzyme A, acetyl-CoA and long-chain acyl-CoA in human blood platelets. Clin Chim Acta. 1982 Dec 23;126(3):307–313. doi: 10.1016/0009-8981(82)90305-9. [DOI] [PubMed] [Google Scholar]
  13. Ingebretsen O. C., Bakken A. M., Segadal L., Farstad M. Determination of adenine nucleotides and inosine in human myocard by ion-pair reversed-phase high-performance liquid chromatography. J Chromatogr. 1982 Jun 18;242(1):119–126. doi: 10.1016/s0021-9673(00)87253-2. [DOI] [PubMed] [Google Scholar]
  14. Iritani N., Ikeda Y., Kajitani H. Selectivities of 1-acylglycerophosphorylcholine acyltransferase and acyl-CoA synthetase for n-3 polyunsaturated fatty acids in platelets and liver microsomes. Biochim Biophys Acta. 1984 May 11;793(3):416–422. [PubMed] [Google Scholar]
  15. Kameda K., Suzuki L. K., Imai Y. Further purification, characterization and salt activation of acyl-CoA synthetase from Escherichia coli. Biochim Biophys Acta. 1985 May 29;840(1):29–36. doi: 10.1016/0304-4165(85)90158-8. [DOI] [PubMed] [Google Scholar]
  16. Kramer R. M., Pritzker C. R., Deykin D. Coenzyme A-mediated arachidonic acid transacylation in human platelets. J Biol Chem. 1984 Feb 25;259(4):2403–2406. [PubMed] [Google Scholar]
  17. Laposata M., Krueger C. M., Saffitz J. E. Selective uptake of [3H]arachidonic acid into the dense tubular system of human platelets. Blood. 1987 Sep;70(3):832–837. [PubMed] [Google Scholar]
  18. Laposata M., Reich E. L., Majerus P. W. Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues. J Biol Chem. 1985 Sep 15;260(20):11016–11020. [PubMed] [Google Scholar]
  19. Lienhard G. E., Secemski I. I. P 1 ,P 5 -Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem. 1973 Feb 10;248(3):1121–1123. [PubMed] [Google Scholar]
  20. Majerus P. W., Prescott S. M., Hofmann S. L., Neufeld E. J., Wilson D. B. Uptake and release of arachidonate by platelets. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:45–52. [PubMed] [Google Scholar]
  21. McKean M. L., Smith J. B., Silver M. J. Phospholipid biosynthesis in human platelets. Formation of phosphatidylcholine from 1-acyl lysophosphatidylcholine by acyl-CoA:1-acyl-sn-glycero-3-phosphocholine acyltransferase. J Biol Chem. 1982 Oct 10;257(19):11278–11283. [PubMed] [Google Scholar]
  22. Neufeld E. J., Sprecher H., Evans R. W., Majerus P. W. Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase. J Lipid Res. 1984 Mar;25(3):288–293. [PubMed] [Google Scholar]
  23. Norum K. R., Farstad M., Bremer J. The submitochondrial distribution of acid:CoA ligase (AMP) and palmityl-CoA:carnitine palmityltransferase in rat liver mitochondria. Biochem Biophys Res Commun. 1966 Sep 8;24(5):797–804. doi: 10.1016/0006-291x(66)90397-4. [DOI] [PubMed] [Google Scholar]
  24. Noy N., Zakim D. Fatty acids bound to unilamellar lipid vesicles as substrates for microsomal acyl-CoA ligase. Biochemistry. 1985 Jul 2;24(14):3521–3525. doi: 10.1021/bi00335a020. [DOI] [PubMed] [Google Scholar]
  25. Ockner R. K., Manning J. A. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J Clin Invest. 1974 Aug;54(2):326–338. doi: 10.1172/JCI107768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pande S. V., Lee T. S., Murthy M. S. Freeze-thawing causes masking of membrane-bound outer carnitine palmitoyltransferase activity: implications for studies on carnitine palmitoyltransferases deficiency. Biochim Biophys Acta. 1990 May 22;1044(2):262–268. doi: 10.1016/0005-2760(90)90312-l. [DOI] [PubMed] [Google Scholar]
  27. Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., Hashimoto T., Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed] [Google Scholar]
  28. Tanaka T., Hosaka K., Hoshimaru M., Numa S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur J Biochem. 1979 Jul;98(1):165–172. doi: 10.1111/j.1432-1033.1979.tb13173.x. [DOI] [PubMed] [Google Scholar]
  29. Vollset S. E., Farstad M. A study of assay conditions for palmitoyl-CoA synthetase and carnitine palmitoyltransferase in homogenates of human blood platelets. Scand J Clin Lab Invest. 1979 Feb;39(1):15–21. doi: 10.3109/00365517909104934. [DOI] [PubMed] [Google Scholar]
  30. Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES