Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 May 15;276(Pt 1):79–87. doi: 10.1042/bj2760079

The human asialoglycoprotein receptor is a possible binding site for low-density lipoproteins and chylomicron remnants.

E Windler 1, J Greeve 1, B Levkau 1, V Kolb-Bachofen 1, W Daerr 1, H Greten 1
PMCID: PMC1151146  PMID: 1645533

Abstract

Binding and internalization of chylomicron remnants from rat mesenteric lymph by HepG2 cells was inhibited by both excess remnants and low-density lipoprotein (LDL) to the same extent. Ligand blots revealed binding of remnants and LDL to the LDL receptor. Measures regulating LDL receptor activity greatly influenced the binding of remnants: ethinyloestradiol, the hydroxymethylglutaryl-CoA reductase inhibitor pravastatin and the absence of LDL all increased binding, whereas high cell density or the presence of LDL decreased binding. Also, asialofetuin, asialomucin, the neoglycoprotein galactosyl-albumin and an antibody against the asialoglycoprotein receptor all decreased substantially the binding of remnants. At high cell density, binding internalization and degradation of chylomicron remnants was inhibited by up to 70-80%, yet binding of LDL was inhibited by no more than 20-30%. In cross-competition studies, the binding of 125I-asialofetuin was efficiently competed for by asialofetuin itself or by the antibody, and also by LDL and remnants, yet remnants displayed an approx. 100-fold higher affinity than LDL. Likewise, remnants of human triacylglycerol-rich lipoproteins and asialofetuin interfered with each others' binding to HepG2 cells or human liver membranes. It is concluded that the LDL receptor mediates the internalization of chylomicron remnants into hepatocytes depending on its activity, according to demand for cholesterol. Additionally, the asialoglycoprotein receptor may contribute to the endocytosis of LDL, but predominantly of chylomicron remnants.

Full text

PDF
81

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  2. Attie A. D., Pittman R. C., Steinberg D. Metabolism of native and of lactosylated human low density lipoprotein: evidence for two pathways for catabolism of exogenous proteins in rat hepatocytes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5923–5927. doi: 10.1073/pnas.77.10.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Attie A. D., Weinstein D. B., Freeze H. H., Pittman R. C., Steinberg D. Unaltered catabolism of desialylated low-density lipoprotein in the pig and in cultured rat hepatocytes. Biochem J. 1979 Jun 15;180(3):647–654. doi: 10.1042/bj1800647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Belcher J. D., Hamilton R. L., Brady S. E., Hornick C. A., Jaeckle S., Schneider W. J., Havel R. J. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6785–6789. doi: 10.1073/pnas.84.19.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernini F., Via D. P., Bocan T. M., Gotto A. M., Jr, Smith L. C. Lactosaminated Fab fragments specific for low density lipoproteins/hepatocyte targeting and hypolipoproteinemic activity. Arteriosclerosis. 1988 Nov-Dec;8(6):825–831. doi: 10.1161/01.atv.8.6.825. [DOI] [PubMed] [Google Scholar]
  7. Bischoff J., Lodish H. F. Two asialoglycoprotein receptor polypeptides in human hepatoma cells. J Biol Chem. 1987 Aug 25;262(24):11825–11832. [PubMed] [Google Scholar]
  8. Braiterman L. T., Chance S. C., Porter W. R., Lee Y. C., Townsend R. R., Hubbard A. L. The major subunit of the rat asialoglycoprotein receptor can function alone as a receptor. J Biol Chem. 1989 Jan 25;264(3):1682–1688. [PubMed] [Google Scholar]
  9. Chao Y. S., Jones A. L., Hradek G. T., Windler E. E., Havel R. J. Autoradiographic localization of the sites of uptake, cellular transport, and catabolism of low density lipoproteins in the liver of normal and estrogen-treated rats. Proc Natl Acad Sci U S A. 1981 Jan;78(1):597–601. doi: 10.1073/pnas.78.1.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper A. D., Coleman D. Chylomicron remnant and asialoglycoprotein metabolism are independent. Lipids. 1985 Oct;20(10):664–667. doi: 10.1007/BF02534384. [DOI] [PubMed] [Google Scholar]
  11. Cooper A. D., Nutik R., Chen J. Characterization of the estrogen-induced lipoprotein receptor of rat liver. J Lipid Res. 1987 Jan;28(1):59–68. [PubMed] [Google Scholar]
  12. Dashti N., Wolfbauer G., Koren E., Knowles B., Alaupovic P. Catabolism of human low density lipoproteins by human hepatoma cell line HepG2. Biochim Biophys Acta. 1984 Jul 26;794(3):373–384. doi: 10.1016/0005-2760(84)90003-1. [DOI] [PubMed] [Google Scholar]
  13. Edge S. B., Hoeg J. M., Triche T., Schneider P. D., Brewer H. B., Jr Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor. J Biol Chem. 1986 Mar 15;261(8):3800–3806. [PubMed] [Google Scholar]
  14. Filipovic I., Schwarzmann G., Mraz W., Wiegandt H., Buddecke E. Sialic-acid content of low-density lipoproteins controls their binding and uptake by cultured cells. Eur J Biochem. 1979 Jan 2;93(1):51–55. doi: 10.1111/j.1432-1033.1979.tb12793.x. [DOI] [PubMed] [Google Scholar]
  15. Geuze H. J., van der Donk H. A., Simmons C. F., Slot J. W., Strous G. J., Schwartz A. L. Receptor-mediated endocytosis in liver parenchymal cells. Int Rev Exp Pathol. 1986;29:113–171. [PubMed] [Google Scholar]
  16. Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J. L., Brown M. S. The LDL receptor defect in familial hypercholesterolemia. Implications for pathogenesis and therapy. Med Clin North Am. 1982 Mar;66(2):335–362. doi: 10.1016/s0025-7125(16)31424-9. [DOI] [PubMed] [Google Scholar]
  18. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K. K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988 Dec 20;7(13):4119–4127. doi: 10.1002/j.1460-2075.1988.tb03306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hui D. Y., Innerarity T. L., Mahley R. W. Lipoprotein binding to canine hepatic membranes. Metabolically distinct apo-E and apo-B,E receptors. J Biol Chem. 1981 Jun 10;256(11):5646–5655. [PubMed] [Google Scholar]
  20. Hussain M. M., Bucher N. L., Faris B., Franzblau C., Zannis V. I. Tissue-specific posttranslational modification of rat apoE. Synthesis of sialated apoE forms by neonatal rat aortic smooth muscle cells. J Lipid Res. 1988 Jul;29(7):915–923. [PubMed] [Google Scholar]
  21. Jaeckle S., Brady S. E., Havel R. J. Membrane binding sites for plasma lipoproteins on endosomes from rat liver. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1880–1884. doi: 10.1073/pnas.86.6.1880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jain R. S., Quarfordt S. H. The carbohydrate content of apolipoprotein E from human very low density lipoproteins. Life Sci. 1979 Oct 8;25(15):1315–1323. doi: 10.1016/0024-3205(79)90397-7. [DOI] [PubMed] [Google Scholar]
  23. Jensen E., Florén C. H., Nilsson A. Cell-density-dependent uptake of chylomicron remnants in rat hepatocyte monolayers. Effects of compactin and mevalonic acid. Biochim Biophys Acta. 1987 Jan 13;917(1):74–80. doi: 10.1016/0005-2760(87)90285-2. [DOI] [PubMed] [Google Scholar]
  24. Jones A. L., Hradek G. T., Hornick C., Renaud G., Windler E. E., Havel R. J. Uptake and processing of remnants of chylomicrons and very low density lipoproteins by rat liver. J Lipid Res. 1984 Nov;25(11):1151–1158. [PubMed] [Google Scholar]
  25. Kita T., Goldstein J. L., Brown M. S., Watanabe Y., Hornick C. A., Havel R. J. Hepatic uptake of chylomicron remnants in WHHL rabbits: a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3623–3627. doi: 10.1073/pnas.79.11.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kowal R. C., Herz J., Goldstein J. L., Esser V., Brown M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5810–5814. doi: 10.1073/pnas.86.15.5810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leichtner A. M., Krieger M., Schwartz A. L. Regulation of low density lipoprotein receptor function in a human hepatoma cell line. Hepatology. 1984 Sep-Oct;4(5):897–901. doi: 10.1002/hep.1840040518. [DOI] [PubMed] [Google Scholar]
  28. Lund H., Takahashi K., Hamilton R. L., Havel R. J. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9318–9322. doi: 10.1073/pnas.86.23.9318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mazzone T., Basheeruddin K., Ping L., Frazer S., Getz G. S. Mechanism of the growth-related activation of the low density lipoprotein receptor pathway. J Biol Chem. 1989 Jan 25;264(3):1787–1792. [PubMed] [Google Scholar]
  30. Nagata Y., Chen J., Cooper A. D. Role of low density lipoprotein receptor-dependent and -independent sites in binding and uptake of chylomicron remnants in rat liver. J Biol Chem. 1988 Oct 15;263(29):15151–15158. [PubMed] [Google Scholar]
  31. Nenseter M. S., Blomhoff R., Drevon C. A., Kindberg G. M., Norum K. R., Berg T. Uptake of LDL in parenchymal and non-parenchymal rabbit liver cells in vivo. LDL uptake is increased in endothelial cells in cholesterol-fed rabbits. Biochem J. 1988 Sep 1;254(2):443–448. doi: 10.1042/bj2540443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Orekhov A. N., Tertov V. V., Mukhin D. N., Mikhailenko I. A. Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells: discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients. Biochem Biophys Res Commun. 1989 Jul 14;162(1):206–211. doi: 10.1016/0006-291x(89)91982-7. [DOI] [PubMed] [Google Scholar]
  33. Pittman R. C., Carew T. E., Attie A. D., Witztum J. L., Watanabe Y., Steinberg D. Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal rabbits and in receptor-deficient mutant rabbits. J Biol Chem. 1982 Jul 25;257(14):7994–8000. [PubMed] [Google Scholar]
  34. Reardon C. A., Hay R. V., Gordon J. I., Getz G. S. Processing of rat liver apoprotein E primary translation product. J Lipid Res. 1984 Apr;25(4):348–360. [PubMed] [Google Scholar]
  35. Roos P. H., Hartman H. J., Schlepper-Schäfer J., Kolb H., Kolb-Bachofen V. Galactose-specific receptors on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor. Biochim Biophys Acta. 1985 Oct 30;847(1):115–121. doi: 10.1016/0167-4889(85)90161-2. [DOI] [PubMed] [Google Scholar]
  36. Sata T., Havel R. J., Jones A. L. Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans. J Lipid Res. 1972 Nov;13(6):757–768. [PubMed] [Google Scholar]
  37. Schwartz A. L., Fridovich S. E., Knowles B. B., Lodish H. F. Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J Biol Chem. 1981 Sep 10;256(17):8878–8881. [PubMed] [Google Scholar]
  38. Schwartz A. L., Fridovich S. E., Lodish H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J Biol Chem. 1982 Apr 25;257(8):4230–4237. [PubMed] [Google Scholar]
  39. Semenkovich C. F., Ostlund R. E., Jr Estrogens induce low-density lipoprotein receptor activity and decrease intracellular cholesterol in human hepatoma cell line Hep G2. Biochemistry. 1987 Aug 11;26(16):4987–4992. doi: 10.1021/bi00390a016. [DOI] [PubMed] [Google Scholar]
  40. Shia M. A., Lodish H. F. The two subunits of the human asialoglycoprotein receptor have different fates when expressed alone in fibroblasts. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1158–1162. doi: 10.1073/pnas.86.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steer C. J., Weiss P., Huber B. E., Wirth P. J., Thorgeirsson S. S., Ashwell G. Ligand-induced modulation of the hepatic receptor for asialoglycoproteins in the human hepatoblastoma cell line, Hep G2. J Biol Chem. 1987 Dec 25;262(36):17524–17529. [PubMed] [Google Scholar]
  42. Stähler F., Gruber W., Stinshoff K., Röschlau P. Eine praxisgerechte enzymatische Cholesterin-Bestimmung. Med Lab (Stuttg) 1977 Feb;30(2):29–37. [PubMed] [Google Scholar]
  43. Taniguchi T., Ishikawa Y., Tsunemitsu M., Fukuzaki H. The structures of the asparagine-linked sugar chains of human apolipoprotein B-100. Arch Biochem Biophys. 1989 Aug 15;273(1):197–205. doi: 10.1016/0003-9861(89)90179-3. [DOI] [PubMed] [Google Scholar]
  44. Treichel U., Roos P. H., Kolb H. The hepatic asialoglycoprotein receptor selectively binds to some endogenous tissues. Eur J Cell Biol. 1989 Feb;48(1):116–120. [PubMed] [Google Scholar]
  45. Wade D. P., Knight B. L., Soutar A. K. Detection of the low-density-lipoprotein receptor with biotin-low-density lipoprotein. A rapid new method for ligand blotting. Biochem J. 1985 Aug 1;229(3):785–790. doi: 10.1042/bj2290785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Walli A. K., Seidel D. Role of lipoprotein-X in the pathogenesis of cholestatic hypercholesterolemia. Uptake of lipoprotein-X and its effect on 3-hydroxy-3-methylglutaryl coenzyme A reductase and chylomicron remnant removal in human fibroblasts, lymphocytes, and in the rat. J Clin Invest. 1984 Sep;74(3):867–879. doi: 10.1172/JCI111504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wernette-Hammond M. E., Garcia Z., Arnold K. S., Innerarity T. L. Beta-very low density lipoprotein uptake in cultured fibroblasts and smooth muscle cells from Watanabe heritable hyperlipidemic rabbits. Arteriosclerosis. 1989 Jul-Aug;9(4):501–510. doi: 10.1161/01.atv.9.4.501. [DOI] [PubMed] [Google Scholar]
  48. Windler E. E., Greeve J., Daerr W. H., Greten H. Binding of rat chylomicrons and their remnants to the hepatic low-density-lipoprotein receptor and its role in remnant removal. Biochem J. 1988 Jun 1;252(2):553–561. doi: 10.1042/bj2520553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Windler E. E., Kovanen P. T., Chao Y. S., Brown M. S., Havel R. J., Goldstein J. L. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem. 1980 Nov 10;255(21):10464–10471. [PubMed] [Google Scholar]
  50. Windler E. E., Preyer S., Greten H. Influence of lysophosphatidylcholine on the C-apolipoprotein content of rat and human triglyceride-rich lipoproteins during triglyceride hydrolysis. J Clin Invest. 1986 Sep;78(3):658–665. doi: 10.1172/JCI112624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamamoto T., Bishop R. W., Brown M. S., Goldstein J. L., Russell D. W. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6;232(4755):1230–1237. doi: 10.1126/science.3010466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zanni E. E., Kouvatsi A., Hadzopoulou-Cladaras M., Krieger M., Zannis V. I. Expression of ApoE gene in Chinese hamster cells with a reversible defect in O-glycosylation. Glycosylation is not required for apoE secretion. J Biol Chem. 1989 Jun 5;264(16):9137–9140. [PubMed] [Google Scholar]
  53. Zannis V. I., McPherson J., Goldberger G., Karathanasis S. K., Breslow J. L. Synthesis, intracellular processing, and signal peptide of human apolipoprotein E. J Biol Chem. 1984 May 10;259(9):5495–5499. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES