Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 May 15;276(Pt 1):189–195. doi: 10.1042/bj2760189

Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function.

J Howl 1, T Ismail 1, A J Strain 1, C J Kirk 1, D Anderson 1, M Wheatley 1
PMCID: PMC1151163  PMID: 2039469

Abstract

The [Arg8]vasopressin (AVP) receptor expressed by human hepatocytes was characterized, and compared with the rat hepatic V1a vasopressin receptor subtype. In addition to determining the pharmacological profile of the human receptor, the cellular responses to AVP were measured in human and rat hepatocytes by assaying glycogen phosphorylase alpha activity and DNA synthesis. Marked differences were observed between human and rat hepatocytes regarding vasopressin receptors and the intracellular consequences of stimulation by AVP. Data presented in this paper demonstrate the following, (i) Vasopressin V1a receptors are present in low abundance on human hepatocytes. (ii) Species differences exist between human and rat V1a receptors with respect to the affinity of some selective antagonists. (iii) AVP-stimulated glycogen phosphorylase a activation in human hepatocytes was approx. 5% of that observed in rat cells. (iv) In contrast with rat hepatocytes, DNA synthesis in human cells in culture was not stimulated by AVP. It is concluded that vasopressin plays only a minor role in the regulation of human hepatic function. Furthermore, conclusions drawn from observations made with AVP and its analogues on rat hepatic function cannot be directly extrapolated to the human situation.

Full text

PDF
194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoni F. A. Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology. 1984 Aug;39(2):186–188. doi: 10.1159/000123976. [DOI] [PubMed] [Google Scholar]
  2. Assimacopoulos-Jeannet F., Cantau B., van de Werve G., Jard S., Jeanrenaud B. Lack of vasopressin receptors in liver, but not in kidney, of ob/ob mice. Biochem J. 1983 Nov 15;216(2):475–480. doi: 10.1042/bj2160475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baertschi A. J., Friedli M. A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology. 1985 Feb;116(2):499–502. doi: 10.1210/endo-116-2-499. [DOI] [PubMed] [Google Scholar]
  4. Baur H., Kasperek S., Pfaff E. Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):827–838. doi: 10.1515/bchm2.1975.356.s1.827. [DOI] [PubMed] [Google Scholar]
  5. Belzer F. O., Southard J. H. Principles of solid-organ preservation by cold storage. Transplantation. 1988 Apr;45(4):673–676. doi: 10.1097/00007890-198804000-00001. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  7. Cantau B., Keppens S., De Wulf H., Jard S. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation. J Recept Res. 1980;1(2):137–168. doi: 10.3109/10799898009044096. [DOI] [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Dickey B. F., Fishman J. B., Fine R. E., Navarro J. Reconstitution of the rat liver vasopressin receptor coupled to guanine nucleotide-binding proteins. J Biol Chem. 1987 Jun 25;262(18):8738–8742. [PubMed] [Google Scholar]
  10. Hems D. A., Rodrigues L. M., Whitton P. D. Glycogen phosphorylase, glucose output and vasoconstriction in the perfused rat liver. Concentration-dependence of actions of adrenaline, vasopressin and angiotensin II. Biochem J. 1976 Nov 15;160(2):367–374. doi: 10.1042/bj1600367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
  12. Hems D. A., Whitton P. D., Ma G. Y. Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim Biophys Acta. 1975 Nov 10;411(1):155–164. doi: 10.1016/0304-4165(75)90294-9. [DOI] [PubMed] [Google Scholar]
  13. Hems D. A., Whitton P. D. Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver. Biochem J. 1973 Nov;136(3):705–709. doi: 10.1042/bj1360705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunt N. H., Perris A. D., Sandford P. A. Role of vasopressin in the mitotic response of rat bone marrow cells to haemorrhage. J Endocrinol. 1977 Jan;72(1):5–16. doi: 10.1677/joe.0.0720005. [DOI] [PubMed] [Google Scholar]
  16. Jard S., Gaillard R. C., Guillon G., Marie J., Schoenenberg P., Muller A. F., Manning M., Sawyer W. H. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol. 1986 Aug;30(2):171–177. [PubMed] [Google Scholar]
  17. Keen M., Kelly E., Nobbs P., MacDermot J. A selective binding site for 3H-NECA that is not an adenosine A2 receptor. Biochem Pharmacol. 1989 Nov 1;38(21):3827–3833. doi: 10.1016/0006-2952(89)90592-3. [DOI] [PubMed] [Google Scholar]
  18. Keppens S., Vandenheede J. R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977 Feb 28;496(2):448–457. doi: 10.1016/0304-4165(77)90327-0. [DOI] [PubMed] [Google Scholar]
  19. Keppens S., de Wulf H. The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett. 1975 Mar 1;51(1):29–32. doi: 10.1016/0014-5793(75)80848-9. [DOI] [PubMed] [Google Scholar]
  20. Keppens S., de Wulf H. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim Biophys Acta. 1979 Nov 15;588(1):63–69. doi: 10.1016/0304-4165(79)90371-4. [DOI] [PubMed] [Google Scholar]
  21. Kirk C. J., Guillon G., Balestre M. N., Jard S. Stimulation, by vasopressin and other agonists, of inositol-lipid breakdown and inositol phosphate accumulation in WRK 1 cells. Biochem J. 1986 Nov 15;240(1):197–204. doi: 10.1042/bj2400197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirk C. J., Hems D. A. Hepatic action of vasopressin: lack of a role for adenosine-3',5'-cyclic monophosphate. FEBS Lett. 1974 Oct 1;47(1):128–131. doi: 10.1016/0014-5793(74)80441-2. [DOI] [PubMed] [Google Scholar]
  23. Kirk C. J., Michell R. H., Hems D. A. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin. Biochem J. 1981 Jan 15;194(1):155–165. doi: 10.1042/bj1940155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kirk C. J., Rodrigues L. M., Hems D. A. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem J. 1979 Feb 15;178(2):493–496. doi: 10.1042/bj1780493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Knepel W., Homolka L., Vlaskovska M. In vitro CRF activity of vasopressin analogs is not related to pressor activity. Eur J Pharmacol. 1983 Jul 15;91(1):115–118. doi: 10.1016/0014-2999(83)90371-0. [DOI] [PubMed] [Google Scholar]
  26. Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
  27. Liard J. F., Dériaz O., Schelling P., Thibonnier M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am J Physiol. 1982 Nov;243(5):H663–H669. doi: 10.1152/ajpheart.1982.243.5.H663. [DOI] [PubMed] [Google Scholar]
  28. Lowbridge J., Manning M., Haldar J., Sawyer W. H. Synthesis and some pharmacological properties of [4-threonine, 7-glycine]oxytocin, [1-(L-2-hydroxy-3-mercaptopropanoic acid), 4-threonine, 7-glycine]oxytocin (hydroxy[Thr4, Gly7]oxytocin), and [7-Glycine]oxytocin, peptides with high oxytocic-antidiuretic selectivity. J Med Chem. 1977 Jan;20(1):120–123. doi: 10.1021/jm00211a025. [DOI] [PubMed] [Google Scholar]
  29. Manning M., Nawrocka E., Misicka A., Olma A., Klis W. A., Seto J., Sawyer W. H. Potent and selective antagonists of the antidiuretic responses to arginine-vasopressin based on modifications of [1-(beta-mercapto-beta,beta-pentamethylenepropionic acid),2-D-isoleucine,4- valine]arginine-vasopressin at position 4. J Med Chem. 1984 Apr;27(4):423–429. doi: 10.1021/jm00370a002. [DOI] [PubMed] [Google Scholar]
  30. McGowan J. A., Strain A. J., Bucher N. L. DNA synthesis in primary cultures of adult rat hepatocytes in a defined medium: effects of epidermal growth factor, insulin, glucagon, and cyclic-AMP. J Cell Physiol. 1981 Sep;108(3):353–363. doi: 10.1002/jcp.1041080309. [DOI] [PubMed] [Google Scholar]
  31. Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
  32. Miller R. P., Husain F., Svensson M., Lohin S. Enhancement of [3H-methyl]thymidine incorporation and replication of rat chondrocytes grown in tissue culture by plasma, tissue extracts and vasopressin. Endocrinology. 1977 May;100(5):1365–1375. doi: 10.1210/endo-100-5-1365. [DOI] [PubMed] [Google Scholar]
  33. Palmer S., Hawkins P. T., Michell R. H., Kirk C. J. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem J. 1986 Sep 1;238(2):491–499. doi: 10.1042/bj2380491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pieniazek D., Pronicka E., Pawłowska J. The behavior of hepatic phosphorylase b kinase, phosphorylase a and b after administration of glucagon to patients with glycogen storage disease type VIa. Horm Metab Res. 1986 Aug;18(8):546–550. [PubMed] [Google Scholar]
  35. Raymond V., Leung P. C., Veilleux R., Labrie F. Vasopressin rapidly stimulates phosphatidic acid-phosphatidylinositol turnover in rat anterior pituitary cells. FEBS Lett. 1985 Mar 11;182(1):196–200. doi: 10.1016/0014-5793(85)81183-2. [DOI] [PubMed] [Google Scholar]
  36. Ross H., Marshall V. C., Escott M. L. 72-hr canine kidney preservation without continuous perfusion. Transplantation. 1976 Jun;21(6):498–501. doi: 10.1097/00007890-197606000-00009. [DOI] [PubMed] [Google Scholar]
  37. Russell W. E., Bucher N. L. Vasopressin modulates liver regeneration in the Brattleboro rat. Am J Physiol. 1983 Aug;245(2):G321–G324. doi: 10.1152/ajpgi.1983.245.2.G321. [DOI] [PubMed] [Google Scholar]
  38. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  39. Sharma S. K., Nirenberg M., Klee W. A. Morphine receptors as regulators of adenylate cyclase activity. Proc Natl Acad Sci U S A. 1975 Feb;72(2):590–594. doi: 10.1073/pnas.72.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stassen F. L., Bryan W., Gross M., Kavanagh B., Shue D., Sulat L., Wiebelhaus V. D., Yim N., Kinter L. B. Critical differences between species in the in vivo and in vitro renal responses to antidiuretic hormone antagonists. Prog Brain Res. 1983;60:395–403. doi: 10.1016/S0079-6123(08)64406-4. [DOI] [PubMed] [Google Scholar]
  41. Strain A. J., McGowan J. A., Bucher N. L. Stimulation of DNA synthesis in primary cultures of adult rat hepatocytes by rat platelet-associated substance(s). In Vitro. 1982 Feb;18(2):108–116. doi: 10.1007/BF02796402. [DOI] [PubMed] [Google Scholar]
  42. Thakker J. K., DiMarchi R., MacDonald K., Caro J. F. Effect of insulin and insulin-like growth factors I and II on phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate breakdown in liver from humans with and without type II diabetes. J Biol Chem. 1989 May 5;264(13):7169–7175. [PubMed] [Google Scholar]
  43. Vandekerckhove A., Miot F., Keppens S., De Wulf H. Lack of V1 vasopressin receptors in rabbit hepatocytes. Biochem J. 1989 Apr 15;259(2):609–611. doi: 10.1042/bj2590609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES