Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 1;277(Pt 1):239–243. doi: 10.1042/bj2770239

Kinetics of GTP hydrolysis during the assembly of chick brain MAP2-tubulin microtubule protein.

R G Burns 1
PMCID: PMC1151215  PMID: 1854336

Abstract

The kinetics of GTP hydrolysis during microtubule assembly have been examined using chick brain MAP2-tubulin microtubule protein in a NaCl-supplemented buffer. The elongating microtubules terminate in a 'GTP cap', since the kinetics of GTP hydrolysis are slower than those of subunit addition. GTP hydrolysis is (a) stoichiometric, (b) occurs as a vectorial wave as the initial rate of hydrolysis is proportional to the molar concentration of microtubule ends and not to the initial rate of subunit addition, and (c) either does not occur, or occurs only at a much lower rate, in the terminal subunits.

Full text

PDF
241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batra J. K., Lin C. M., Hamel E. Nucleotide interconversions in microtubule protein preparations, a significant complication for accurate measurement of GTP hydrolysis in the presence of adenosine 5'-(beta, gamma-imidotriphosphate). Biochemistry. 1987 Sep 8;26(18):5925–5931. doi: 10.1021/bi00392a052. [DOI] [PubMed] [Google Scholar]
  2. Bayley P. M., Schilstra M. J., Martin S. R. Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model. J Cell Sci. 1990 Jan;95(Pt 1):33–48. doi: 10.1242/jcs.95.1.33. [DOI] [PubMed] [Google Scholar]
  3. Burns R. G. Assembly of chick brain MAP2-tubulin microtubule protein. Characterization of the protein and the MAP2-dependent addition of tubulin dimers. Biochem J. 1991 Jul 1;277(Pt 1):231–238. doi: 10.1042/bj2770231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caplow M. Location of the guanosine triphosphate (GTP) hydrolysis site in microtubules. Ann N Y Acad Sci. 1986;466:510–518. doi: 10.1111/j.1749-6632.1986.tb38428.x. [DOI] [PubMed] [Google Scholar]
  5. Caplow M., Shanks J. Mechanism of the microtubule GTPase reaction. J Biol Chem. 1990 May 25;265(15):8935–8941. [PubMed] [Google Scholar]
  6. Carlier M. F., Didry D., Pantaloni D. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Biochemistry. 1987 Jul 14;26(14):4428–4437. doi: 10.1021/bi00388a036. [DOI] [PubMed] [Google Scholar]
  7. Carlier M. F., Hill T. L., Chen Y. Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci U S A. 1984 Feb;81(3):771–775. doi: 10.1073/pnas.81.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlier M. F., Melki R., Pantaloni D., Hill T. L., Chen Y. Synchronous oscillations in microtubule polymerization. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5257–5261. doi: 10.1073/pnas.84.15.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlier M. F., Pantaloni D. Assembly of microtubule protein: role of guanosine di- and triphosphate nucleotides. Biochemistry. 1982 Mar 16;21(6):1215–1224. doi: 10.1021/bi00535a017. [DOI] [PubMed] [Google Scholar]
  10. Carlier M. F., Pantaloni D. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry. 1981 Mar 31;20(7):1918–1924. doi: 10.1021/bi00510a030. [DOI] [PubMed] [Google Scholar]
  11. Chen Y., Hill T. L. Theoretical treatment of microtubules disappearing in solution. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4127–4131. doi: 10.1073/pnas.82.12.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. David-Pfeuty T., Erickson H. P., Pantaloni D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5372–5376. doi: 10.1073/pnas.74.12.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamel E., Batra J. K., Huang A. B., Lin C. M. Effects of pH on tubulin-nucleotide interactions. Arch Biochem Biophys. 1986 Mar;245(2):316–330. doi: 10.1016/0003-9861(86)90222-5. [DOI] [PubMed] [Google Scholar]
  14. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  15. Horio T., Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature. 1986 Jun 5;321(6070):605–607. doi: 10.1038/321605a0. [DOI] [PubMed] [Google Scholar]
  16. Islam K., Burns R. G. Microtubules and nucleoside diphosphate kinase. Nucleoside diphosphate kinase binds to co-purifying contaminants rather than to microtubule proteins. Biochem J. 1985 Dec 15;232(3):651–656. doi: 10.1042/bj2320651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacNeal R. K., Purich D. L. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J Biol Chem. 1978 Jul 10;253(13):4683–4687. [PubMed] [Google Scholar]
  18. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  19. O'Brien E. T., Voter W. A., Erickson H. P. GTP hydrolysis during microtubule assembly. Biochemistry. 1987 Jun 30;26(13):4148–4156. doi: 10.1021/bi00387a061. [DOI] [PubMed] [Google Scholar]
  20. Schilstra M. J., Martin S. R., Bayley P. M. On the relationship between nucleotide hydrolysis and microtubule assembly: studies with a GTP-regenerating system. Biochem Biophys Res Commun. 1987 Sep 15;147(2):588–595. doi: 10.1016/0006-291x(87)90971-5. [DOI] [PubMed] [Google Scholar]
  21. Stewart R. J., Farrell K. W., Wilson L. Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism. Biochemistry. 1990 Jul 10;29(27):6489–6498. doi: 10.1021/bi00479a022. [DOI] [PubMed] [Google Scholar]
  22. Symmons M. F., Burns R. G. Assembly of chick brain MAP2-tubulin microtubule protein. Analysis of tubulin subunit flux rates by immunofluorescence microscopy. Biochem J. 1991 Jul 1;277(Pt 1):245–253. doi: 10.1042/bj2770245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Walker R. A., O'Brien E. T., Pryer N. K., Soboeiro M. F., Voter W. A., Erickson H. P., Salmon E. D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–1448. doi: 10.1083/jcb.107.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES