Abstract
cDNA clones encoding the plasma membrane Ca2+ pump isoform PMCA1 were obtained from rabbit stomach smooth muscle. The PMCA1 gene has a 154 base exon which can be alternatively spliced. In splices containing 0, 87 or 114 bases of this exon, the mRNA downstream from this position encodes a protein containing the peptide sequence Lys-Arg-Asn-Ser-Ser (KRNSS), which can be phosphorylated by cyclic-nucleotide-sensitive protein kinase. However, in those splices containing 154 bases, the mRNA encodes a protein that does not contain this sequence. The cDNA clone obtained in this study did not contain the latter exon, and thus it coded for KRNSS. The presence of the various splices of PMCA1 was determined in stomach smooth muscle and other tissues by reverse transcription followed by a polymerase chain reaction. Percentage of transcripts encoding the potentially cyclic-nucleotide-sensitive isoform in various tissues were as follows: liver, 100%; stomach mucosa, 100%; heart, 100%; stomach smooth muscle, 86%; aorta, 83%; brain, 55%. Thus brain was the only tissue which expressed a very high proportion of the isoform of PMCA1 that is insensitive to cyclic-nucleotide-dependent protein kinases.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. C. Ca++-binding properties of cznine aortic microsomes: lack of effect of c-AMP. Blood Vessels. 1977 Mar;14(2):91–104. doi: 10.1159/000158117. [DOI] [PubMed] [Google Scholar]
- Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Clyman R. I., Manganiello V. C., Lovell-Smith C. J., Vaughan M. Calcium uptake by subcellular fractions of human umbilical artery. Am J Physiol. 1976 Oct;231(4):1074–1081. doi: 10.1152/ajplegacy.1976.231.4.1074. [DOI] [PubMed] [Google Scholar]
- De Jaegere S., Wuytack F., Eggermont J. A., Verboomen H., Casteels R. Molecular cloning and sequencing of the plasma-membrane Ca2+ pump of pig smooth muscle. Biochem J. 1990 Nov 1;271(3):655–660. doi: 10.1042/bj2710655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggermont J. A., Wuytack F., Verbist J., Casteels R. Expression of endoplasmic-reticulum Ca2(+)-pump isoforms and of phospholamban in pig smooth-muscle tissues. Biochem J. 1990 Nov 1;271(3):649–653. doi: 10.1042/bj2710649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enyedi A., Vorherr T., James P., McCormick D. J., Filoteo A. G., Carafoli E., Penniston J. T. The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem. 1989 Jul 25;264(21):12313–12321. [PubMed] [Google Scholar]
- Furukawa K., Nakamura H. Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+)ATPase in vascular smooth muscle. J Biochem. 1987 Jan;101(1):287–290. doi: 10.1093/oxfordjournals.jbchem.a121904. [DOI] [PubMed] [Google Scholar]
- Greeb J., Shull G. E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem. 1989 Nov 5;264(31):18569–18576. [PubMed] [Google Scholar]
- Grover A. K. Ca-pumps in smooth muscle: one in plasma membrane and another in endoplasmic reticulum. Cell Calcium. 1985 Jun;6(3):227–236. doi: 10.1016/0143-4160(85)90008-9. [DOI] [PubMed] [Google Scholar]
- Grover A. K. Monoclonal antibody against an epitope on the cytoplasmic aspect of the plasma membrane calcium pump. J Biol Chem. 1988 Dec 25;263(36):19510–19512. [PubMed] [Google Scholar]
- Gunteski-Hamblin A. M., Greeb J., Shull G. E. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem. 1988 Oct 15;263(29):15032–15040. [PubMed] [Google Scholar]
- James P. H., Pruschy M., Vorherr T. E., Penniston J. T., Carafoli E. Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump. Biochemistry. 1989 May 16;28(10):4253–4258. doi: 10.1021/bi00436a020. [DOI] [PubMed] [Google Scholar]
- Khan I., Grover A. K. Cloning of internal Ca pump from rabbit stomach smooth muscle. Nucleic Acids Res. 1990 Jul 11;18(13):4026–4026. doi: 10.1093/nar/18.13.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan I., Spencer G. G., Samson S. E., Crine P., Boileau G., Grover A. K. Abundance of sarcoplasmic reticulum calcium pump isoforms in stomach and cardiac muscles. Biochem J. 1990 Jun 1;268(2):415–419. doi: 10.1042/bj2680415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
- Lytton J., Zarain-Herzberg A., Periasamy M., MacLennan D. H. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem. 1989 Apr 25;264(12):7059–7065. [PubMed] [Google Scholar]
- MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
- Nishikori K., Maeno H. Close relationship between adenosine 3':5'-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes. J Biol Chem. 1979 Jul 10;254(13):6099–6106. [PubMed] [Google Scholar]
- Nishikori K., Takenaka T., Maeno H. Stimulation of microsomal calcium uptake and protein phosphorylation by adenosine cyclic 3', 5'-monophosphate in rat uterus. Mol Pharmacol. 1977 Jul;13(4):671–678. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol. 1989;51:473–485. doi: 10.1146/annurev.ph.51.030189.002353. [DOI] [PubMed] [Google Scholar]
- Shull G. E., Greeb J. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem. 1988 Jun 25;263(18):8646–8657. [PubMed] [Google Scholar]
- Shull G. E., Schwartz A., Lingrel J. B. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature. 1985 Aug 22;316(6030):691–695. doi: 10.1038/316691a0. [DOI] [PubMed] [Google Scholar]
- Spencer G. G., Yu X. H., Khan I., Grover A. K. Expression of isoforms of internal Ca2+ pump in cardiac, smooth muscle and non-muscle tissues. Biochim Biophys Acta. 1991 Mar 18;1063(1):15–20. doi: 10.1016/0005-2736(91)90347-b. [DOI] [PubMed] [Google Scholar]
- Strehler E. E., Strehler-Page M. A., Vogel G., Carafoli E. mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6908–6912. doi: 10.1073/pnas.86.18.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma A. K., Filoteo A. G., Stanford D. R., Wieben E. D., Penniston J. T., Strehler E. E., Fischer R., Heim R., Vogel G., Mathews S. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem. 1988 Oct 5;263(28):14152–14159. [PubMed] [Google Scholar]
- Wuytack F., De Schutter G., Verbist J., Casteels R. Antibodies to the calmodulin-binding Ca2+-transport ATPase from smooth muscle. FEBS Lett. 1983 Apr 5;154(1):191–195. doi: 10.1016/0014-5793(83)80901-6. [DOI] [PubMed] [Google Scholar]
- Wuytack F., Raeymaekers L., Verbist J., De Smedt H., Casteels R. Evidence for the presence in smooth muscle of two types of Ca2+-transport ATPase. Biochem J. 1984 Dec 1;224(2):445–451. doi: 10.1042/bj2240445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Bastie D., Wisnewsky C., Schwartz K., Lompré A. M. (Ca2+ + Mg2+)-dependent ATPase mRNA from smooth muscle sarcoplasmic reticulum differs from that in cardiac and fast skeletal muscles. FEBS Lett. 1988 Feb 29;229(1):45–48. doi: 10.1016/0014-5793(88)80794-4. [DOI] [PubMed] [Google Scholar]