Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 15;277(Pt 2):565–568. doi: 10.1042/bj2770565

Use of membrane vesicles to estimate the numbers of system y+ and system L amino acid transporters in human erythrocytes.

C M Tse 1, D A Fincham 1, J C Ellory 1, J D Young 1
PMCID: PMC1151272  PMID: 1907132

Abstract

We have used equilibrium values for L-leucine and L-lysine uptake by right-side-out vesicles to estimate the membrane abundance (sites/cell) of Na(+)-dependent amino acid transport systems L and y+ in human erythrocytes. All of the intravesicular space was accessible to L-leucine, as judged by comparisons with uridine uptake via the equilibrative nucleoside transporter (10(4) sites/cell). In contrast, only 28% of the total intravesicular space was accessible to L-lysine uptake via system y+. Since human erythrocyte membranes generate an average of approximately 1000 vesicles/cell, these data provide evidence that system L is a relatively high-abundance membrane transport protein in human erythrocytes, while system y+ is present in smaller amounts (approximately 300 copies/cell). Calculated turnover numbers for L-lysine transport by system y+ at 37 degrees C are 24 s-1 for zero-trans influx and 150 s-1 for equilibrium-exchange influx.

Full text

PDF
568

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonioli J. A., Christensen H. N. Differences in schedules of regression of transport systems during reticulocyte maturation. J Biol Chem. 1969 Mar 25;244(6):1505–1509. [PubMed] [Google Scholar]
  2. Christensen H. N. Exploiting amino acid structure to learn about membrane transport. Adv Enzymol Relat Areas Mol Biol. 1979;49:41–101. doi: 10.1002/9780470122945.ch2. [DOI] [PubMed] [Google Scholar]
  3. Christensen H. N. Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta. 1984 Sep 3;779(3):255–269. doi: 10.1016/0304-4157(84)90012-1. [DOI] [PubMed] [Google Scholar]
  4. Gardner J. D., Levy A. G. Transport of dibasic amino acids by human erythrocytes. Metabolism. 1972 May;21(5):413–431. doi: 10.1016/0026-0495(72)90054-6. [DOI] [PubMed] [Google Scholar]
  5. Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., Kanner B. I. Cloning and expression of a rat brain GABA transporter. Science. 1990 Sep 14;249(4974):1303–1306. doi: 10.1126/science.1975955. [DOI] [PubMed] [Google Scholar]
  6. Harvey C. M., Ellory J. C. Identification of amino acid transporters in the red blood cell. Methods Enzymol. 1989;173:122–160. doi: 10.1016/s0076-6879(89)73010-x. [DOI] [PubMed] [Google Scholar]
  7. Hoare D. G. The temperature dependence of the transport of L-leucine in human erythrocytes. J Physiol. 1972 Mar;221(2):331–348. doi: 10.1113/jphysiol.1972.sp009754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jarvis S. M., Young J. D. Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites. Biochem J. 1980 Aug 15;190(2):377–383. doi: 10.1042/bj1900377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lew V. L., Muallem S., Seymour C. A. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature. 1982 Apr 22;296(5859):742–744. doi: 10.1038/296742a0. [DOI] [PubMed] [Google Scholar]
  10. Lew V. L., Muallem S., Seymour C. A. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature. 1982 Apr 22;296(5859):742–744. doi: 10.1038/296742a0. [DOI] [PubMed] [Google Scholar]
  11. Lin S., Spudich J. A. Biochemical studies on the mode of action of cytochalasin B. Cytochalasin B binding to red cell membrane in relation to glucose transport. J Biol Chem. 1974 Sep 25;249(18):5778–5783. [PubMed] [Google Scholar]
  12. Macintyre J. D., Gunn R. B. Activation and deactivation kinetics of Ca transport in inside-out erythrocyte membrane vesicles. Biochim Biophys Acta. 1981 Jun 22;644(2):351–362. doi: 10.1016/0005-2736(81)90393-x. [DOI] [PubMed] [Google Scholar]
  13. McCormick J. I., Johnstone R. M. Simple and effective purification of a Na+-dependent amino acid transport system from Ehrlich ascites cell plasma membrane. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7877–7881. doi: 10.1073/pnas.85.21.7877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Radian R., Bendahan A., Kanner B. I. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem. 1986 Nov 25;261(33):15437–15441. [PubMed] [Google Scholar]
  15. Rosenberg R. L-Leucine transport in human red blood cells: a detailed kinetic analysis. J Membr Biol. 1981;62(1-2):79–93. doi: 10.1007/BF01870202. [DOI] [PubMed] [Google Scholar]
  16. Solomon A. K. Ca binding to the human red cell membrane: characterization of membrane preparations and binding sites. J Membr Biol. 1976 Nov 29;29(4):345–372. doi: 10.1007/BF01868970. [DOI] [PubMed] [Google Scholar]
  17. Tse C. M., Wu J. S., Young J. D. Evidence for the asymmetrical binding of p-chloromercuriphenyl sulphonate to the human erythrocyte nucleoside transporter. Biochim Biophys Acta. 1985 Sep 10;818(3):316–324. doi: 10.1016/0005-2736(85)90005-7. [DOI] [PubMed] [Google Scholar]
  18. WINTER C. G., CHRISTENSEN H. N. MIGRATION OF AMINO ACIDS ACROSS THE MEMBRANE OF THE HUMAN ERYTHROCYTE. J Biol Chem. 1964 Mar;239:872–878. [PubMed] [Google Scholar]
  19. Wieth J. O. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. J Physiol. 1979 Sep;294:521–539. doi: 10.1113/jphysiol.1979.sp012944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wright E. M., Peerce B. E. Identification and conformational changes of the intestinal proline carrier. J Biol Chem. 1984 Dec 25;259(24):14993–14996. [PubMed] [Google Scholar]
  21. Young J. D., Jones S. E., Ellory J. C. Amino acid transport in human and in sheep erythrocytes. Proc R Soc Lond B Biol Sci. 1980 Sep 26;209(1176):355–375. doi: 10.1098/rspb.1980.0100. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES