Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Sep 1;278(Pt 2):411–415. doi: 10.1042/bj2780411

Phorbol 12,13-dibutyrate binding to intact human platelets. The role of cytosolic free Ca2+.

J Takaya 1, M Kimura 1, N Lasker 1, A Aviv 1
PMCID: PMC1151358  PMID: 1898334

Abstract

The role of Ca2+ was examined in regulating the binding of phorbol 12,13-dibutyrate (PdBu) to intact human platelets. Alterations in the cytosolic free Ca2+ concn. [( Ca2+]i), but not extracellular Ca2+, substantially influenced the binding parameters of the phorbol ester. Ca(2+)-depleted platelets demonstrated a significant decline in the maximal binding capacity (Bmax), an increase in equilibrium dissociation constant (Kd) and a decrease in the Hill coefficient (h), suggesting the presence of Ca(2+)-sensitive and Ca(2+)-insensitive populations of PdBu-binding sites. In 1 mM-Ca2+ buffer, thrombin (0.1 NIH unit/ml) and ionomycin (0.5 microM) evoked a rise in [Ca2+]i to approx. 300-500 nM, associated with a significant decline in Kd, but without an apparent effect on Bmax. No effect of thrombin was observed on PdBu binding in Ca(2+)-depleted platelets. Inhibition of protein kinase C (PKC) by H7 was associated with a greater thrombin-evoked [Ca2+]i transient and a decline in Kd. Staurosporine also decreased the Kd for PdBu binding. We propose that this effect of the PKC inhibitors on the Kd was also [Ca2+]i-dependent. These observations in intact platelets indicate that the primary role of agonist- or non-agonist-induced rise in [Ca2+]i is to increase the affinity of PKC for PdBu and, presumably, endogenous diacylglycerol. However, in itself a rise in [Ca2+]i does not increase the Bmax, for PdBu binding.

Full text

PDF
413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumberg P. M., Jaken S., König B., Sharkey N. A., Leach K. L., Jeng A. Y., Yeh E. Mechanism of action of the phorbol ester tumor promoters: specific receptors for lipophilic ligands. Biochem Pharmacol. 1984 Mar 15;33(6):933–940. doi: 10.1016/0006-2952(84)90448-9. [DOI] [PubMed] [Google Scholar]
  2. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  3. Dowd J. P., Alila H. W., Hansel W. Phorbol ester receptors in bovine luteal cells: relationship to protein kinase C. Mol Cell Endocrinol. 1990 Mar 5;69(2-3):199–206. doi: 10.1016/0303-7207(90)90013-x. [DOI] [PubMed] [Google Scholar]
  4. Dunphy W. G., Kochenburger R. J., Castagna M., Blumberg P. M. Kinetics and subcellular localization of specific [3H]phorbol 12, 13-dibutyrate binding by mouse brain. Cancer Res. 1981 Jul;41(7):2640–2647. [PubMed] [Google Scholar]
  5. Gardner J. P., Maher E., Aviv A. Calcium mobilization and Na+/H+ antiport activation by endothelin in human skin fibroblasts. FEBS Lett. 1989 Oct 9;256(1-2):38–42. doi: 10.1016/0014-5793(89)81713-2. [DOI] [PubMed] [Google Scholar]
  6. Goodwin B. J., Weinberg J. B. Receptor-mediated modulation of human monocyte, neutrophil, lymphocyte, and platelet function by phorbol diesters. J Clin Invest. 1982 Oct;70(4):699–706. doi: 10.1172/JCI110665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hannun Y. A., Loomis C. R., Merrill A. H., Jr, Bell R. M. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem. 1986 Sep 25;261(27):12604–12609. [PubMed] [Google Scholar]
  8. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  9. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  10. Kiley S., Schaap D., Parker P., Hsieh L. L., Jaken S. Protein kinase C heterogeneity in GH4C1 rat pituitary cells. Characterization of a Ca2(+)-independent phorbol ester receptor. J Biol Chem. 1990 Sep 15;265(26):15704–15712. [PubMed] [Google Scholar]
  11. Kimura M., Gardner J. P., Aviv A. Agonist-evoked alkaline shift in the cytosolic pH set point for activation of Na+/H+ antiport in human platelets. The role of cytosolic Ca2+ and protein kinase C. J Biol Chem. 1990 Dec 5;265(34):21068–21074. [PubMed] [Google Scholar]
  12. King W. G., Rittenhouse S. E. Inhibition of protein kinase C by staurosporine promotes elevated accumulations of inositol trisphosphates and tetrakisphosphate in human platelets exposed to thrombin. J Biol Chem. 1989 Apr 15;264(11):6070–6074. [PubMed] [Google Scholar]
  13. Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980 Mar 25;255(6):2273–2276. [PubMed] [Google Scholar]
  14. Lydan M. A., O'Day D. H. Different developmental functions for calmodulin in Dictyostelium: trifluoperazine and R24571 both inhibit cell and pronuclear fusion but enhance gamete formation. Exp Cell Res. 1988 Sep;178(1):51–63. doi: 10.1016/0014-4827(88)90377-1. [DOI] [PubMed] [Google Scholar]
  15. May W. S., Jr, Sahyoun N., Wolf M., Cuatrecasas P. Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature. 1985 Oct 10;317(6037):549–551. doi: 10.1038/317549a0. [DOI] [PubMed] [Google Scholar]
  16. Mori T., Takai Y., Minakuchi R., Yu B., Nishizuka Y. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1980 Sep 25;255(18):8378–8380. [PubMed] [Google Scholar]
  17. Mori T., Takai Y., Yu B., Takahashi J., Nishizuka Y., Fujikura T. Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase. J Biochem. 1982 Feb;91(2):427–431. doi: 10.1093/oxfordjournals.jbchem.a133714. [DOI] [PubMed] [Google Scholar]
  18. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  20. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  21. Orellana S., Solski P. A., Brown J. H. Guanosine 5'-O-(thiotriphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J Biol Chem. 1987 Feb 5;262(4):1638–1643. [PubMed] [Google Scholar]
  22. Pollock W. K., Sage S. O., Rink T. J. Stimulation of Ca2+ efflux from fura-2-loaded platelets activated by thrombin or phorbol myristate acetate. FEBS Lett. 1987 Jan 5;210(2):132–136. doi: 10.1016/0014-5793(87)81322-4. [DOI] [PubMed] [Google Scholar]
  23. Rittenhouse S. E., Sasson J. P. Mass changes in myoinositol trisphosphate in human platelets stimulated by thrombin. Inhibitory effects of phorbol ester. J Biol Chem. 1985 Jul 25;260(15):8657–8660. [PubMed] [Google Scholar]
  24. Robinson J. M., Badwey J. A., Karnovsky M. L., Karnovsky M. J. Release of superoxide and change in morphology by neutrophils in response to phorbol esters: antagonism by inhibitors of calcium-binding proteins. J Cell Biol. 1985 Sep;101(3):1052–1058. doi: 10.1083/jcb.101.3.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sharkey N. A., Leach K. L., Blumberg P. M. Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc Natl Acad Sci U S A. 1984 Jan;81(2):607–610. doi: 10.1073/pnas.81.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shoyab M., Todaro G. J. Specific high affinity cell membrane receptors for biologically active phorbol and ingenol esters. Nature. 1980 Dec 4;288(5790):451–455. doi: 10.1038/288451a0. [DOI] [PubMed] [Google Scholar]
  27. Siess W., Lapetina E. G. Ca2+ mobilization primes protein kinase C in human platelets. Ca2+ and phorbol esters stimulate platelet aggregation and secretion synergistically through protein kinase C. Biochem J. 1988 Oct 1;255(1):309–318. [PMC free article] [PubMed] [Google Scholar]
  28. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  29. Vegesna R. V., Wu H. L., Mong S., Crooke S. T. Staurosporine inhibits protein kinase C and prevents phorbol ester-mediated leukotriene D4 receptor desensitization in RBL-1 cells. Mol Pharmacol. 1988 May;33(5):537–542. [PubMed] [Google Scholar]
  30. Verme T. B., Velarde R. T., Cunningham R. M., Hootman S. R. Effects of staurosporine on protein kinase C and amylase secretion from pancreatic acini. Am J Physiol. 1989 Oct;257(4 Pt 1):G548–G553. doi: 10.1152/ajpgi.1989.257.4.G548. [DOI] [PubMed] [Google Scholar]
  31. Watson S. P., Lapetina E. G. 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid hydrolysis. Proc Natl Acad Sci U S A. 1985 May;82(9):2623–2626. doi: 10.1073/pnas.82.9.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolf M., Baggiolini M. The protein kinase inhibitor staurosporine, like phorbol esters, induces the association of protein kinase C with membranes. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1273–1279. doi: 10.1016/0006-291x(88)90277-x. [DOI] [PubMed] [Google Scholar]
  33. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]
  34. Wolf M., LeVine H., 3rd, May W. S., Jr, Cuatrecasas P., Sahyoun N. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature. 1985 Oct 10;317(6037):546–549. doi: 10.1038/317546a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES