Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Sep 15;278(Pt 3):621–625. doi: 10.1042/bj2780621

Differential rates of conversion of rat proinsulins I and II. Evidence for slow cleavage at the B-chain/C-peptide junction of proinsulin II.

S V Sizonenko 1, P A Halban 1
PMCID: PMC1151392  PMID: 1898351

Abstract

Rat proinsulin I is converted into insulin more rapidly than is proinsulin II. To study this further, rat islets were labelled (10 min) and conversion kinetics of the labelled proinsulins were monitored during a 120 min chase. Proinsulins, conversion intermediates and both insulins were separated by h.p.l.c. The accumulation of des-64,65-(split proinsulin II) during the chase suggests that the B-chain/C-peptide junction of proinsulin II is cleaved more slowly than the equivalent site on proinsulin I. This accounts for the differential kinetics of conversion of proinsulins I and II, and is presumed to be caused by one (or more) of the amino acid replacements which distinguish the two proinsulins.

Full text

PDF
622

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brakch N., Boussetta H., Rholam M., Cohen P. Processing endoprotease recognizes a structural feature at the cleavage site of peptide prohormones. The pro-ocytocin/neurophysin model. J Biol Chem. 1989 Sep 25;264(27):15912–15916. [PubMed] [Google Scholar]
  2. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  3. Clark J. L., Steiner D. F. Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc Natl Acad Sci U S A. 1969 Jan;62(1):278–285. doi: 10.1073/pnas.62.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen R. M., Given B. D., Licinio-Paixao J., Provow S. A., Rue P. A., Frank B. H., Root M. A., Polonsky K. S., Tager H. S., Rubenstein A. H. Proinsulin radioimmunoassay in the evaluation of insulinomas and familial hyperproinsulinemia. Metabolism. 1986 Dec;35(12):1137–1146. doi: 10.1016/0026-0495(86)90027-2. [DOI] [PubMed] [Google Scholar]
  5. Darby N. J., Smyth D. G. Endopeptidases and prohormone processing. Biosci Rep. 1990 Feb;10(1):1–13. doi: 10.1007/BF01116845. [DOI] [PubMed] [Google Scholar]
  6. Davidson H. W., Hutton J. C. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J. 1987 Jul 15;245(2):575–582. doi: 10.1042/bj2450575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  8. Docherty K., Rhodes C. J., Taylor N. A., Shennan K. I., Hutton J. C. Proinsulin endopeptidase substrate specificities defined by site-directed mutagenesis of proinsulin. J Biol Chem. 1989 Nov 5;264(31):18335–18339. [PubMed] [Google Scholar]
  9. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  10. Douglass J., Civelli O., Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem. 1984;53:665–715. doi: 10.1146/annurev.bi.53.070184.003313. [DOI] [PubMed] [Google Scholar]
  11. Fiedorek F. T., Jr, Carnaghi L. R., Giddings S. J. Selective expression of the insulin I gene in rat insulinoma-derived cell lines. Mol Endocrinol. 1990 Jul;4(7):990–999. doi: 10.1210/mend-4-7-990. [DOI] [PubMed] [Google Scholar]
  12. Giddings S. J., Carnaghi L. R. Selective expression and developmental regulation of the ancestral rat insulin II gene in fetal liver. Mol Endocrinol. 1990 Sep;4(9):1363–1369. doi: 10.1210/mend-4-9-1363. [DOI] [PubMed] [Google Scholar]
  13. Gishizky M. L., Grodsky G. M. Differential kinetics of rat insulin I and II processing in rat islets of Langerhans. FEBS Lett. 1987 Nov 2;223(2):227–231. doi: 10.1016/0014-5793(87)80294-6. [DOI] [PubMed] [Google Scholar]
  14. Gomez S., Boileau G., Zollinger L., Nault C., Rholam M., Cohen P. Site-specific mutagenesis identifies amino acid residues critical in prohormone processing. EMBO J. 1989 Oct;8(10):2911–2916. doi: 10.1002/j.1460-2075.1989.tb08440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gross D. J., Villa-Komaroff L., Kahn C. R., Weir G. C., Halban P. A. Deletion of a highly conserved tetrapeptide sequence of the proinsulin connecting peptide (C-peptide) inhibits proinsulin to insulin conversion by transfected pituitary corticotroph (AtT20) cells. J Biol Chem. 1989 Dec 25;264(36):21486–21490. [PubMed] [Google Scholar]
  16. Gross D., Skvorak A., Hendrick G., Weir G., Villa-Komaroff L., Halban P. Oxidation of rat insulin II, but not I, leads to anomalous elution profiles upon HPLC analysis of insulin-related peptides. FEBS Lett. 1988 Dec 5;241(1-2):205–208. doi: 10.1016/0014-5793(88)81062-7. [DOI] [PubMed] [Google Scholar]
  17. Halban P. A. Inhibition of proinsulin to insulin conversion in rat islets using arginine and lysine analogs. Lack of effect on rate of release of modified products. J Biol Chem. 1982 Nov 25;257(22):13177–13180. [PubMed] [Google Scholar]
  18. Halban P. A., Rhodes C. J., Shoelson S. E. High-performance liquid chromatography (HPLC): a rapid, flexible and sensitive method for separating islet proinsulin and insulin. Diabetologia. 1986 Dec;29(12):893–896. doi: 10.1007/BF00870146. [DOI] [PubMed] [Google Scholar]
  19. Harris R. B. Processing of pro-hormone precursor proteins. Arch Biochem Biophys. 1989 Dec;275(2):315–333. doi: 10.1016/0003-9861(89)90379-2. [DOI] [PubMed] [Google Scholar]
  20. Hutton J. C., Peshavaria M. Proton-translocating Mg2+-dependent ATPase activity in insulin-secretory granules. Biochem J. 1982 Apr 15;204(1):161–170. doi: 10.1042/bj2040161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hutton J. C. The insulin secretory granule. Diabetologia. 1989 May;32(5):271–281. doi: 10.1007/BF00265542. [DOI] [PubMed] [Google Scholar]
  22. Kemmler W., Peterson J. D., Steiner D. F. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J Biol Chem. 1971 Nov 25;246(22):6786–6791. [PubMed] [Google Scholar]
  23. Linde S., Nielsen J. H., Hansen B., Welinder B. S. Reversed-phase high-performance liquid chromatographic analyses of insulin biosynthesis in isolated rat and mouse islets. J Chromatogr. 1989 Jan 13;462:243–254. doi: 10.1016/s0021-9673(00)91351-7. [DOI] [PubMed] [Google Scholar]
  24. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  25. Noe B. D. Inhibition of islet prohormone to hormone conversion by incorporation of arginine and lysine analogs. J Biol Chem. 1981 May 25;256(10):4940–4946. [PubMed] [Google Scholar]
  26. Orci L., Ravazzola M., Amherdt M., Madsen O., Perrelet A., Vassalli J. D., Anderson R. G. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol. 1986 Dec;103(6 Pt 1):2273–2281. doi: 10.1083/jcb.103.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orci L. The insulin factory: a tour of the plant surroundings and a visit to the assembly line. The Minkowski lecture 1973 revisited. Diabetologia. 1985 Aug;28(8):528–546. doi: 10.1007/BF00281987. [DOI] [PubMed] [Google Scholar]
  28. Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  29. Rhodes C. J., Lucas C. A., Mutkoski R. L., Orci L., Halban P. A. Stimulation by ATP of proinsulin to insulin conversion in isolated rat pancreatic islet secretory granules. Association with the ATP-dependent proton pump. J Biol Chem. 1987 Aug 5;262(22):10712–10717. [PubMed] [Google Scholar]
  30. Rholam M., Nicolas P., Cohen P. Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett. 1986 Oct 20;207(1):1–6. doi: 10.1016/0014-5793(86)80002-3. [DOI] [PubMed] [Google Scholar]
  31. Robbins D. C., Shoelson S. E., Rubenstein A. H., Tager H. S. Familial hyperproinsulinemia. Two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. J Clin Invest. 1984 Mar;73(3):714–719. doi: 10.1172/JCI111264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rouiller D. G., Cirulli V., Halban P. A. Differences in aggregation properties and levels of the neural cell adhesion molecule (NCAM) between islet cell types. Exp Cell Res. 1990 Dec;191(2):305–312. doi: 10.1016/0014-4827(90)90019-7. [DOI] [PubMed] [Google Scholar]
  33. Stefan Y., Meda P., Neufeld M., Orci L. Stimulation of insulin secretion reveals heterogeneity of pancreatic B cells in vivo. J Clin Invest. 1987 Jul;80(1):175–183. doi: 10.1172/JCI113045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sutton R., Peters M., McShane P., Gray D. W., Morris P. J. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 1986 Dec;42(6):689–691. doi: 10.1097/00007890-198612000-00022. [DOI] [PubMed] [Google Scholar]
  35. Thim L., Hansen M. T., Norris K., Hoegh I., Boel E., Forstrom J., Ammerer G., Fiil N. P. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6766–6770. doi: 10.1073/pnas.83.18.6766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weiss M. A., Frank B. H., Khait I., Pekar A., Heiney R., Shoelson S. E., Neuringer L. J. NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry. 1990 Sep 11;29(36):8389–8401. doi: 10.1021/bi00488a028. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES