Abstract
The effect of acute insulin treatment of hepatocytes on pyruvate carboxylation in both isolated mitochondria and cells rendered permeable by filipin was examined. Challenging the cells with insulin alone had no effect on either the basal rate of pyruvate carboxylation or gluconeogenesis, although it did suppress the responses to both glucagon and catecholamines. Insulin treatment was unable to antagonize the enhanced rate of pyruvate carboxylation caused by stimulation of the cells with either angiotensin or vasopressin. Neither insulin nor the gluconeogenic hormones altered the total extractable pyruvate carboxylase activity in the isolated mitochondria, suggesting that the effect of hormones at the level of the isolated intact organelle was mediated via alterations in the intramitochondrial concentrations of effector molecules, notably ATP and the [ATP]/[ADP] ratio and substrate availability. The alterations in pyruvate carboxylation correlate well with glucose synthesis in terms of sensitivity to effector molecules, putative second messengers and time of onset of the response, indicating that alterations in the flux through this enzyme are compatible with it being an important site in the control of gluconeogenesis from C3 precursors.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam P. A., Haynes R. C., Jr Control of hepatic mitochondrial CO2 fixation by glucagon, epinephrine, and cortisol. J Biol Chem. 1969 Dec 10;244(23):6444–6450. [PubMed] [Google Scholar]
- Allan E. H., Chisholm A. B., Titheradge M. A. Hormonal stimulation of mitochondrial pyruvate carboxylation in filipin-treated hepatocytes. Biochem J. 1983 May 15;212(2):417–426. doi: 10.1042/bj2120417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. J Biol Chem. 1977 Apr 25;252(8):2662–2669. [PubMed] [Google Scholar]
- Babcock D. F., Chen J. L., Yip B. P., Lardy H. A. Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes. J Biol Chem. 1979 Sep 10;254(17):8117–8120. [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackmore P. F., Dehaye J. P., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem. 1979 Aug 10;254(15):6945–6950. [PubMed] [Google Scholar]
- Brooker G., Harper J. F., Terasaki W. L., Moylan R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res. 1979;10:1–33. [PubMed] [Google Scholar]
- Bryla J., Harris E. J., Plumb J. A. The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett. 1977 Aug 15;80(2):443–448. doi: 10.1016/0014-5793(77)80494-8. [DOI] [PubMed] [Google Scholar]
- Claus T. H., Pilkis S. J. Regulation by insulin of gluconeogenesis in isolated rat hepatocytes. Biochim Biophys Acta. 1976 Feb 24;421(2):246–262. doi: 10.1016/0304-4165(76)90291-9. [DOI] [PubMed] [Google Scholar]
- Dehaye J. P., Hughes B. P., Blackmore P. F., Exton J. H. Insulin inhibition of alpha-adrenergic actions in liver. Biochem J. 1981 Mar 15;194(3):949–956. doi: 10.1042/bj1940949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exton J. H., Lewis S. B., Ho R. J., Robison G. A., Park C. R. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism. Ann N Y Acad Sci. 1971 Dec 30;185:85–100. doi: 10.1111/j.1749-6632.1971.tb45239.x. [DOI] [PubMed] [Google Scholar]
- Exton J. H., Park C. R. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1424–1433. [PubMed] [Google Scholar]
- Exton J. H., Park C. R. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J Biol Chem. 1967 Jun 10;242(11):2622–2636. [PubMed] [Google Scholar]
- Feliú J. E., Hue L., Hers H. G. Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2762–2766. doi: 10.1073/pnas.73.8.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrison J. C., Borland M. K., Florio V. A., Twible D. A. The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem. 1979 Aug 10;254(15):7147–7156. [PubMed] [Google Scholar]
- Garrison J. C., Borland M. K. Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. J Biol Chem. 1979 Feb 25;254(4):1129–1133. [PubMed] [Google Scholar]
- Garrison J. C., Haynes R. C., Jr The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J Biol Chem. 1975 Apr 25;250(8):2769–2777. [PubMed] [Google Scholar]
- Halestrap A. P. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem J. 1978 Jun 15;172(3):389–398. doi: 10.1042/bj1720389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hems D. A., Davies C. J., Siddle K. Effect of hormones on content of purine nucleoside cyclic monophosphates in perfused rat liver. FEBS Lett. 1978 Mar 15;87(2):196–198. doi: 10.1016/0014-5793(78)80330-5. [DOI] [PubMed] [Google Scholar]
- Hue L., Felíu J. E., Hers H. G. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem J. 1978 Dec 15;176(3):791–797. doi: 10.1042/bj1760791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutson N. J., Brumley F. T., Assimacopoulos F. D., Harper S. C., Exton J. H. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J Biol Chem. 1976 Sep 10;251(17):5200–5208. [PubMed] [Google Scholar]
- KEECH D. B., UTTER M. F. PYRUVATE CARBOXYLASE. II. PROPERTIES. J Biol Chem. 1963 Aug;238:2609–2614. [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
- Mallet L. E., Exton J. H., Park C. R. Control of gluconeogenesis from amino acids in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5713–5723. [PubMed] [Google Scholar]
- Martin A. D., Titheradge M. A. Hormonal stimulation of gluconeogenesis through increased mitochondrial metabolic flux. Biochem Soc Trans. 1983 Jan;11(1):78–81. doi: 10.1042/bst0110078. [DOI] [PubMed] [Google Scholar]
- McClure W. R., Lardy H. A. Rat liver pyruvate carboxylase. IV. Factors affeing the regulation in vivo. J Biol Chem. 1971 Jun 10;246(11):3591–3596. [PubMed] [Google Scholar]
- Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
- Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rognstad R., Katz J. Role of pyruvate kinase in the regulation of gluconeogenesis from L-lactate. J Biol Chem. 1977 Mar 25;252(6):1831–1833. [PubMed] [Google Scholar]
- Scrutton M. C., White M. D. Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by alpha-ketoglutarate and L-glutamate. J Biol Chem. 1974 Sep 10;249(17):5405–5415. [PubMed] [Google Scholar]
- Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siess E. A., Fahimi F. M., Wieland O. H. Evidence that glucagon stabilizes rather than activates mitochondrial functions in rat liver. Hoppe Seylers Z Physiol Chem. 1981 Dec;362(12):1643–1651. doi: 10.1515/bchm2.1981.362.2.1643. [DOI] [PubMed] [Google Scholar]
- Stucki J. W., Brawand F., Walter P. Regulation of pyruvate metabolim in rat-liver mitochondria by adenine nucleotides and fatty acids. Eur J Biochem. 1972 May;27(1):181–191. doi: 10.1111/j.1432-1033.1972.tb01824.x. [DOI] [PubMed] [Google Scholar]
- Taylor W. M., Prpić V., Exton J. H., Bygrave F. L. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J. 1980 May 15;188(2):443–450. doi: 10.1042/bj1880443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas A. P., Halestrap A. P. Computer stimulation of the effects of alpha-cyano-4-hydroxycinnamate on gluconeogenesis from L-lactate in rat liver cells. Biochem J. 1981 Sep 15;198(3):561–564. doi: 10.1042/bj1980561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Titheradge M. A., Coore H. G. Hormonal regulation of liver mitochondrial pyruvate carrier in relation to gluconeogenesis and lipogenesis. FEBS Lett. 1976 Nov 15;72(1):73–78. doi: 10.1016/0014-5793(76)80901-5. [DOI] [PubMed] [Google Scholar]
- Titheradge M. A., Coore H. G. The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett. 1976 Mar 15;63(1):45–50. doi: 10.1016/0014-5793(76)80191-3. [DOI] [PubMed] [Google Scholar]
- Titheradge M. A., Haynes R. C., Jr The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. Arch Biochem Biophys. 1980 Apr 15;201(1):44–55. doi: 10.1016/0003-9861(80)90485-3. [DOI] [PubMed] [Google Scholar]
- Titheradge M. A., Stringer J. L., Haynes R. C., Jr The stimulation of the mitochondrial uncoupler-dependent ATPase in isolated hepatocytes by catecholamines and glucagon and its relationship to gluconeogenesis. Eur J Biochem. 1979 Dec;102(1):117–124. doi: 10.1111/j.1432-1033.1979.tb06271.x. [DOI] [PubMed] [Google Scholar]
- Weinberg M. B., Utter M. F. Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. J Biol Chem. 1979 Oct 10;254(19):9492–9499. [PubMed] [Google Scholar]
- Whitton P. D., Rodrigues L. M., Hems D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J. 1978 Dec 15;176(3):893–898. doi: 10.1042/bj1760893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson J. R., Browning E. T., Thurman R. G., Scholz R. Inhibition of glucagon effects in perfused rat liver by (+)decanoylcarnitine. J Biol Chem. 1969 Sep 25;244(18):5055–5064. [PubMed] [Google Scholar]
- Wimhurst J. M., Manchester K. L. Some aspects of the kinetics of rat liver pyruvate carboxylase. Biochem J. 1970 Nov;120(1):79–93. doi: 10.1042/bj1200079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Glutz G., Walter P. Regulation of pyruvate carboxylation by acetyl-CoA in rat liver mitochondria. FEBS Lett. 1976 Dec 31;72(2):299–303. doi: 10.1016/0014-5793(76)80991-x. [DOI] [PubMed] [Google Scholar]