Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Sep 15;214(3):975–981. doi: 10.1042/bj2140975

Stereoselectivity of ectonucleotidases on vascular endothelial cells.

N J Cusack, J D Pearson, J L Gordon
PMCID: PMC1152340  PMID: 6312968

Abstract

We have investigated the stereoselectivity of ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5'-nucleotidase, EC 3.1.3.5) on pig aortic endothelial cells using two classes of nucleotide analogue. In experiments with nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety, the rate of catabolism of 100 microM-L-ATP was one-fifth that of D-ATP, the rate of catabolism of 100 microM-L-ADP was one-fifteenth that of D-ADP and there was no detectable catabolism of 100 microM-L-AMP. Each of the L-enantiomers inhibited, apparently competitively, the catabolism of the corresponding D-enantiomer; Ki values were approx. 0.6 mM, 1.0 mM and 3.9 mM for L-ATP, L-ADP and L-AMP respectively. Experiments with adenosine 5'-[beta, gamma-imido]triphosphate and with D- and L-enantiomers of adenosine 5'-[beta, gamma-methylene]triphosphate revealed modest ectopyrophosphatase activity, undetectable in experiments with natural nucleotides, which was also stereoselective. Use of phosphorothioate nucleotide analogues demonstrated that ATP catabolism was virtually stereospecific with respect to the geometry of the thiol group substituted on the beta-phosphate: the Rp isomer was degraded, whereas there was little or no breakdown of the Sp isomer. ADP catabolism was also stereospecific with respect to the geometry of the thiol group substituted on the alpha-phosphate: the Sp isomer but not the Rp isomer was degraded. The geometry of thiol-group substitution on the alpha-phosphate had no effect on ATP catabolism to ADP. There was no detectable catabolism of analogues with thiol-group substitution on the terminal phosphate. Each of the phosphorothioate analogues that was catabolized broke down at a rate similar to that of the natural nucleotide from which it was derived. These results demonstrate that the ectonucleotidases on pig aortic endothelial cells exhibit a high degree of stereoselectivity, characteristic for each enzyme, both with respect to the ribofuranosyl moiety and to the phosphate side chain.

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramovich D. R., Page K. R., Wright F. Effect of angiotensin II and 5-hydroxytryptamine on the vessels of the human foetal cotyledon. Br J Pharmacol. 1983 May;79(1):53–56. doi: 10.1111/j.1476-5381.1983.tb10494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baer H. P., Drummond G. I. Catabolism of adenine nucleotides by the isolated perfused rat heart. Proc Soc Exp Biol Med. 1968 Jan;127(1):33–36. doi: 10.3181/00379727-127-32614. [DOI] [PubMed] [Google Scholar]
  3. Bliss C. I., James A. T. Fitting the rectangular hyperbola. Biometrics. 1966 Sep;22(3):573–602. [PubMed] [Google Scholar]
  4. Bloch A. The structure of nucleosides in relation to their biological and and biochemical activity: a summary. Ann N Y Acad Sci. 1975 Aug 8;255:576–596. doi: 10.1111/j.1749-6632.1975.tb29262.x. [DOI] [PubMed] [Google Scholar]
  5. Brashear R. E., Ross J. C. Disappearance of adenosine diphosphate in vivo. J Lab Clin Med. 1969 Jan;73(1):54–59. [PubMed] [Google Scholar]
  6. Burger R. M., Lowenstein J. M. Preparation and properties of 5'-nucleotidase from smooth muscle of small intestine. J Biol Chem. 1970 Dec 10;245(23):6274–6280. [PubMed] [Google Scholar]
  7. Cohn M., Shih N., Nick J. Reactivity and metal-dependent stereospecificity of the phosphorothioate analogs of ATP in the arginine kinase reaction. Structure of the metal-nucleoside triphosphate substrate. J Biol Chem. 1982 Jul 10;257(13):7646–7649. [PubMed] [Google Scholar]
  8. Crutchley D. J., Eling T. E., Anderson M. W. ADPase activity of isolated perfused rat lung. Life Sci. 1978 Apr 24;22(16):1413–1420. doi: 10.1016/0024-3205(78)90635-5. [DOI] [PubMed] [Google Scholar]
  9. Cusack N. J., Hickman M. E., Born G. V. Effects of D- and L- enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido- analogues on human platelets. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1163):139–144. doi: 10.1098/rspb.1979.0097. [DOI] [PubMed] [Google Scholar]
  10. Cusack N. J., Hourani S. M. Effects of RP and SP diastereoisomers of adenosine 5'-O-(1-thiodiphosphate) on human platelets. Br J Pharmacol. 1981 Jun;73(2):409–412. doi: 10.1111/j.1476-5381.1981.tb10437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cusack N. J., Planker M. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br J Pharmacol. 1979 Sep;67(1):153–158. [PMC free article] [PubMed] [Google Scholar]
  12. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drury A. N., Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929 Nov 25;68(3):213–237. doi: 10.1113/jphysiol.1929.sp002608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eckstein F., Goody R. S. Synthesis and properties of diastereoisomers of adenosine 5'-(O-1-thiotriphosphate) and adenosine 5'-(O-2-thiotriphosphate). Biochemistry. 1976 Apr 20;15(8):1685–1691. doi: 10.1021/bi00653a015. [DOI] [PubMed] [Google Scholar]
  15. Eckstein F. Investigation of enzyme mechanisms with nucleoside phosphorothioates. Angew Chem Int Ed Engl. 1975 Mar;14(3):160–166. doi: 10.1002/anie.197501601. [DOI] [PubMed] [Google Scholar]
  16. Frey P. A., Richard J. P., Ho H. T., Brody R. S., Sammons R. D., Sheu K. F. Stereochemistry of selected phosphotransferases and nucleotidyltransferases. Methods Enzymol. 1982;87:213–235. doi: 10.1016/s0076-6879(82)87016-x. [DOI] [PubMed] [Google Scholar]
  17. Goody R. S., Hofmann W. Stereochemical aspects of the interaction of myosin and actomyosin with nucleotides. J Muscle Res Cell Motil. 1980 Mar;1(1):101–115. doi: 10.1007/BF00711928. [DOI] [PubMed] [Google Scholar]
  18. Hohnadel D. C., Cooper C. The effect of structural modifications of ATP on the yeast-hexokinase reaction. Eur J Biochem. 1972 Nov 21;31(1):180–185. doi: 10.1111/j.1432-1033.1972.tb02517.x. [DOI] [PubMed] [Google Scholar]
  19. Jaffe E. K., Cohn M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J Biol Chem. 1979 Nov 10;254(21):10839–10845. [PubMed] [Google Scholar]
  20. Jaffe E. K., Cohn M. Divalent cation-dependent stereospecificity of adenosine 5'-O-(2-thiotriphosphate) in the hexokinase and pyruvate kinase reactions. The absolute stereochemistry of the diastereoisomers of adenosine 5'-O-(2-thiotriphosphate). J Biol Chem. 1978 Jul 25;253(14):4823–4825. [PubMed] [Google Scholar]
  21. Jaffe E. K., Nick J., Cohn M. Reactivity and metal-dependent stereospecificity of the phosphorothioate analogs of ADP and ATP and reactivity of Cr(III)ATP in the 3-phosphoglycerate kinase reaction. Structure of the metal nucleotide substrates. J Biol Chem. 1982 Jul 10;257(13):7650–7656. [PubMed] [Google Scholar]
  22. Mills D. C., Robb I. A., Roberts G. C. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol. 1968 Apr;195(3):715–729. doi: 10.1113/jphysiol.1968.sp008484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ngoc L. D., Jebeleanu G., Bârzu O. Interaction of sulfur-containing ATP analogs with rabbit muscle phosphofructokinase. FEBS Lett. 1979 Jan 1;97(1):65–68. doi: 10.1016/0014-5793(79)80053-8. [DOI] [PubMed] [Google Scholar]
  24. Norman G. A., Follett M. J., Hector D. A. Quantitative thin-layer chromatography of ATP and the products of its degradation in meat tissue. J Chromatogr. 1974 Mar 13;90(1):105–111. doi: 10.1016/s0021-9673(01)94779-x. [DOI] [PubMed] [Google Scholar]
  25. Pearson J. D., Carleton J. S., Gordon J. L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980 Aug 15;190(2):421–429. doi: 10.1042/bj1900421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pearson J. D., Carleton J. S., Hutchings A., Gordon J. L. Uptake and metabolism of adenosine by pig aortic endothelial and smooth-muscle cells in culture. Biochem J. 1978 Feb 15;170(2):265–271. doi: 10.1042/bj1700265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pearson J. D., Gordon J. L. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature. 1979 Oct 4;281(5730):384–386. doi: 10.1038/281384a0. [DOI] [PubMed] [Google Scholar]
  28. Pillai R. P., Raushel F. M., Villafranca J. J. Stereochemistry of binding of thiophosphate analogs of ATP and ADP to carbamate kinase, glutamine synthetase, and carbamoyl-phosphate synthetase. Arch Biochem Biophys. 1980 Jan;199(1):7–15. doi: 10.1016/0003-9861(80)90249-0. [DOI] [PubMed] [Google Scholar]
  29. Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RANDERATH K., RANDERATH E. ION-EXCHANGE CHROMATOGRAPHY OF NUCLEOTIDES ON POLY-(ETHYLENEIMINE)-CELLULOSE THIN LAYERS. J Chromatogr. 1964 Oct;16:111–125. doi: 10.1016/s0021-9673(01)82445-6. [DOI] [PubMed] [Google Scholar]
  31. Ryan J. W., Ryan U. S. Pulmonary endothelial cells. Fed Proc. 1977 Dec;36(13):2683–2691. [PubMed] [Google Scholar]
  32. Tonomura Y., Imamura K., Ikehara M., Uno H., Harada F. Interaction between synthetic ATP analogues and actomyosin systems. IV. J Biochem. 1967 Apr;61(4):460–472. doi: 10.1093/oxfordjournals.jbchem.a128569. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES