Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Nov 15;216(2):401–408. doi: 10.1042/bj2160401

Bidirectional transport of glutamine across the cell membrane in rat liver.

P Fafournoux, C Demigné, C Rémésy, A Le Cam
PMCID: PMC1152517  PMID: 6661205

Abstract

Hepatocytes isolated from fed rats were used to investigate glutamine transport. Glutamine transport appears as a composite process involving at least two saturable components. The Na+-dependent component probably represents the entry through the N system. The Na+-independent component was also inhibited by histidine and exhibited trans-stimulation, suggestive of a facilitated diffusion process. Kinetic parameters for both systems suggest that facilitated diffusion only plays a minor role in glutamine influx. In contrast, the Km for glutamine efflux was consistent with a physiological role of the facilitated-diffusion component in glutamine release. In Na+ medium, relatively constant distribution ratios (about 8) between intra- and extra-cellular concentrations were observed, with external glutamine ranging from 0.5 to 5 mM. The present observations suggest that glutamine influx might largely be mediated by the N system, whereas facilitated diffusion allows hepatocytes to release glutamine when intracellular concentrations are elevated. The physiological consequences of this bidirectional transfer of glutamine across the liver cell membrane is discussed.

Full text

PDF
401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baverel G., Lund P. A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J. 1979 Dec 15;184(3):599–606. doi: 10.1042/bj1840599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christensen H. N. Interorgan amino acid nutrition. Physiol Rev. 1982 Oct;62(4 Pt 1):1193–1233. doi: 10.1152/physrev.1982.62.4.1193. [DOI] [PubMed] [Google Scholar]
  4. Dalet C., Fehlmann M., Debey P. Use of Percoll density gradient centrifugation for preparing isolated rat hepatocytes having long-term viability. Anal Biochem. 1982 May 1;122(1):119–123. doi: 10.1016/0003-2697(82)90259-7. [DOI] [PubMed] [Google Scholar]
  5. Fafournoux P., Rémésy C., Demigné C. Control of alanine metabolism in rat liver by transport processes or cellular metabolism. Biochem J. 1983 Mar 15;210(3):645–652. doi: 10.1042/bj2100645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fafournoux P., Rémésy C., Demigné C. Stimulation of amino acid transport into liver cells from rats adapted to a high-protein diet. Biochem J. 1982 Jul 15;206(1):13–18. doi: 10.1042/bj2060013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fehlmann M., Le Cam A., Kitabgi P., Rey J. F., Freychet P. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J Biol Chem. 1979 Jan 25;254(2):401–407. [PubMed] [Google Scholar]
  8. Fine A. The effects of chronic metabolic acidosis on liver and muscle glutamine metabolism in the dog in vivo. Biochem J. 1982 Jan 15;202(1):271–273. doi: 10.1042/bj2020271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hacking C., Eddy A. A. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient. Biochem J. 1981 Feb 15;194(2):415–426. doi: 10.1042/bj1940415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Handlogten M. E., Kilberg M. S., Christensen H. N. Incomplete correspondence between repressive and substrate action by amino acids on transport systems A and N in monolayered rat hepatocytes. J Biol Chem. 1982 Jan 10;257(1):345–348. [PubMed] [Google Scholar]
  11. Hayes M. R., McGivan J. D. Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes. Biochem J. 1982 Apr 15;204(1):365–368. doi: 10.1042/bj2040365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Häussinger D., Gerok W., Sies H. Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta. 1983 Jan 25;755(2):272–278. doi: 10.1016/0304-4165(83)90214-3. [DOI] [PubMed] [Google Scholar]
  13. Joseph S. K., Bradford N. M., McGivan J. D. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells. Biochem J. 1978 Dec 15;176(3):827–836. doi: 10.1042/bj1760827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
  16. Peret J., Foustock S., Chanez M., Bois-Joyeux B., Robinson J. L. Hepatic metabolites and amino acid levels during adaptation of rats to a high protein, carbohydrate-free diet. J Nutr. 1981 Oct;111(10):1704–1710. doi: 10.1093/jn/111.10.1704. [DOI] [PubMed] [Google Scholar]
  17. Rémésey C., Demigné C., Aufrère J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J. 1978 Feb 15;170(2):321–329. doi: 10.1042/bj1700321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rémésy C., Demigné C. Impaired lactate utilization in livers of rats fed high protein-diets. J Nutr. 1982 Jan;112(1):60–69. doi: 10.1093/jn/112.1.60. [DOI] [PubMed] [Google Scholar]
  19. Viña J., Saez G. T., Wiggins D., Roberts A. F., Hems R., Krebs H. A. The effect of cysteine oxidation on isolated hepatocytes. Biochem J. 1983 Apr 15;212(1):39–44. doi: 10.1042/bj2120039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Windmueller H. G., Spaeth A. E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem. 1978 Jan 10;253(1):69–76. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES