Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Sep 15;230(3):657–663. doi: 10.1042/bj2300657

Microcompartmentation of transported carnitine, acetylcarnitine and ADP occurs in the mitochondrial matrix. Implications for transport measurements and metabolism.

M S Murthy, S V Pande
PMCID: PMC1152669  PMID: 4062871

Abstract

Monitoring of the exchange-diffusion of carnitine, acetylcarnitine and ADP by measuring the influx of radioactive substrates into mitochondria or their efflux, as commonly employed, underestimated their true transport. Higher transport rates were realized when the imports were monitored by analysing, in the entire incubation medium, formation of metabolites that could proceed only after the substrate import. A recycling of substrate present in an inner microenvironment near the translocase and in the external medium appeared to be responsible for these results. Microcompartmentation of carnitine was observable also at 30 degrees C. These findings strengthen the concept that a sharing of a microcompartment between transporters and enzymes metabolizing the entered substrates occurs and appears to offer a kinetic advantage for the reactions involved. The possibility that different segments of metabolism involving the same substrate may proceed at different loci within the matrix and thus be amenable to independent controls is also indicated by these findings.

Full text

PDF
660

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Daveluy A., Parvin R., Pande S. V. Enzymatic synthesis of radioactive (-)-carnitine from gamma-butyrobetaine prepared by the methylation of gamma-aminobutyric acid. Anal Biochem. 1982 Jan 15;119(2):286–292. doi: 10.1016/0003-2697(82)90587-5. [DOI] [PubMed] [Google Scholar]
  2. Duszynski J., Mueller G., LaNoue K. Microcompartmentation of aspartate in rat liver mitochondria. J Biol Chem. 1978 Sep 10;253(17):6149–6157. [PubMed] [Google Scholar]
  3. Goswami T., Pande S. V. Radioisotopic assay of femtomole quantities of total adenine nucleotides, ATP plus ADP, and AMP. J Biochem Biophys Methods. 1984 May;9(2):143–151. doi: 10.1016/0165-022x(84)90005-8. [DOI] [PubMed] [Google Scholar]
  4. Hamman H. C., Haynes R. C., Jr Elevated intramitochondrial adenine nucleotides and mitochondrial function. Arch Biochem Biophys. 1983 May;223(1):85–94. doi: 10.1016/0003-9861(83)90574-x. [DOI] [PubMed] [Google Scholar]
  5. Hartung K. J., Böhme G., Kunz W. Involvement of intramitochondrial adenine nucleotides and inorganic phosphate in oxidative phosphorylation of extramitochondrially added adenosine-5'-diphosphate. Biomed Biochim Acta. 1983;42(1):15–26. [PubMed] [Google Scholar]
  6. LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
  7. Melnick R. L., Rubenstein C. P., Motzkin S. M. Measurement of mitochondrial oxidative phosphorylation: selective inhibition of adenylate kinase activity by P1,P5-di-(adenosine-5')-pentaphosphate. Anal Biochem. 1979 Jul 1;96(1):7–11. doi: 10.1016/0003-2697(79)90546-3. [DOI] [PubMed] [Google Scholar]
  8. Moreadith R. W., Lehninger A. L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984 May 25;259(10):6215–6221. [PubMed] [Google Scholar]
  9. Murthy M. S., Pande S. V. Mechanism of carnitine acylcarnitine translocase-catalyzed import of acylcarnitines into mitochondria. J Biol Chem. 1984 Jul 25;259(14):9082–9089. [PubMed] [Google Scholar]
  10. Out T. A., Valeton E., Kemp A., Jr Role of the intramitochondrial adenine nucleotides as intermediates in the uncoupler-induced hydrolysis of extramitochondrial ATP. Biochim Biophys Acta. 1976 Sep 13;440(3):697–710. doi: 10.1016/0005-2728(76)90052-9. [DOI] [PubMed] [Google Scholar]
  11. Palmieri F., Klingenberg M. Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol. 1979;56:279–301. doi: 10.1016/0076-6879(79)56029-7. [DOI] [PubMed] [Google Scholar]
  12. Pande S. V. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A. 1975 Mar;72(3):883–887. doi: 10.1073/pnas.72.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pande S. V., Blanchaer M. C. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971 Jan 25;246(2):402–411. [PubMed] [Google Scholar]
  14. Pande S. V., Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem. 1980 Apr 10;255(7):2994–3001. [PubMed] [Google Scholar]
  15. Pande S. V., Parvin R. Pyruvate and acetoacetate transport in mitochondria. A reappraisal. J Biol Chem. 1978 Mar 10;253(5):1565–1573. [PubMed] [Google Scholar]
  16. Parvin R., Pande S. V. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions. J Biol Chem. 1979 Jun 25;254(12):5423–5429. [PubMed] [Google Scholar]
  17. Parvin R., Pande S. V. Microdetermination of (-)carnitine and carnitine acetyltransferase activity. Anal Biochem. 1977 May 1;79(1-2):190–201. doi: 10.1016/0003-2697(77)90393-1. [DOI] [PubMed] [Google Scholar]
  18. Vignais P. V., Vignais P. M., Doussiere J. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria. Biochim Biophys Acta. 1975 Feb 17;376(2):219–230. doi: 10.1016/0005-2728(75)90013-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES