Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Sep 15;230(3):807–815. doi: 10.1042/bj2300807

51V-n.m.r. analysis of the binding of vanadium(V) oligoanions to sarcoplasmic reticulum.

P Csermely, A Martonosi, G C Levy, A J Ejchart
PMCID: PMC1152687  PMID: 3851661

Abstract

The binding of mono- and oligo-vanadates to sarcoplasmic reticulum was analysed by 51V-n.m.r. spectroscopy. The observations indicate that, in addition to monovanadate, the di-, tetra- and deca-vanadates are also bound to sarcoplasmic-reticulum membranes with high affinity. The binding of the vanadate oligoanions may explain some of the effects of vanadates on the conformation and crystallization of Ca2+-transport ATPase.

Full text

PDF
809

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd D. W., Kustin K. Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Biochem. 1984;6:311–365. [PubMed] [Google Scholar]
  2. Choate G., Mansour T. E. Studies on heart phosphofructokinase. Decavanadate as a potent allosteric inhibitor at alkaline and acidic pH. J Biol Chem. 1979 Nov 25;254(22):11457–11462. [PubMed] [Google Scholar]
  3. Climent F., Bartrons R., Pons G., Carreras J. Effect of vanadate on phosphoryl transfer enzymes involved in glucose metabolism. Biochem Biophys Res Commun. 1981 Jul 30;101(2):570–576. doi: 10.1016/0006-291x(81)91297-3. [DOI] [PubMed] [Google Scholar]
  4. DeMaster E. G., Mitchell A. A comparison of arsenate and vanadate as inhibitors or uncouplers of mitochondrial and glycolytic energy metabolism. Biochemistry. 1973 Sep 11;12(19):3616–3621. doi: 10.1021/bi00743a007. [DOI] [PubMed] [Google Scholar]
  5. Dux L., Martonosi A. Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion. J Biol Chem. 1983 Aug 25;258(16):10111–10115. [PubMed] [Google Scholar]
  6. Dux L., Martonosi A. The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. I. The effects of Ca2+, ATP, and inorganic phosphate. J Biol Chem. 1983 Oct 10;258(19):11896–11902. [PubMed] [Google Scholar]
  7. Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
  8. Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lindquist R. N., Lynn J. L., Jr, Lienhard G. E. Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc. 1973 Dec 26;95(26):8762–8768. doi: 10.1021/ja00807a043. [DOI] [PubMed] [Google Scholar]
  11. Medda P., Hasselbach W. The vanadate complex of the calcium-transport ATPase of the sarcoplasmic reticulum, its formation and dissociation. Eur J Biochem. 1983 Dec 1;137(1-2):7–14. doi: 10.1111/j.1432-1033.1983.tb07788.x. [DOI] [PubMed] [Google Scholar]
  12. Nakamura H., Jilka R. L., Boland R., Martonosi A. N. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. J Biol Chem. 1976 Sep 10;251(17):5414–5423. [PubMed] [Google Scholar]
  13. Pai E. F., Sachsenheimer W., Schirmer R. H., Schulz G. E. Substrate positions and induced-fit in crystalline adenylate kinase. J Mol Biol. 1977 Jul;114(1):37–45. doi: 10.1016/0022-2836(77)90281-9. [DOI] [PubMed] [Google Scholar]
  14. Pick U., Bassilian S. Modification of the ATP binding site of the Ca2+ -ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate. FEBS Lett. 1981 Jan 12;123(1):127–130. doi: 10.1016/0014-5793(81)80035-x. [DOI] [PubMed] [Google Scholar]
  15. Pick U., Karlish S. J. Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+-ATPase labelled selectively with fluorescein. Biochim Biophys Acta. 1980 Nov 20;626(1):255–261. doi: 10.1016/0005-2795(80)90216-0. [DOI] [PubMed] [Google Scholar]
  16. Pick U., Karlish S. J. Regulation of the conformation transition in the Ca-ATPase from sarcoplasmic reticulum by pH, temperature, and calcium ions. J Biol Chem. 1982 Jun 10;257(11):6120–6126. [PubMed] [Google Scholar]
  17. Pick U. The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum. J Biol Chem. 1982 Jun 10;257(11):6111–6119. [PubMed] [Google Scholar]
  18. Soman G., Chang Y. C., Graves D. J. Effect of oxyanions of the early transition metals on rabbit skeletal muscle phosphorylase. Biochemistry. 1983 Oct 11;22(21):4994–5000. doi: 10.1021/bi00290a018. [DOI] [PubMed] [Google Scholar]
  19. Varga S., Csermely P., Martonosi A. The binding of vanadium (V) oligoanions to sarcoplasmic reticulum. Eur J Biochem. 1985 Apr 1;148(1):119–126. doi: 10.1111/j.1432-1033.1985.tb08815.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES