Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 15;232(1):15–19. doi: 10.1042/bj2320015

3-Phosphonopropionic acids inhibit carboxypeptidase A as multisubstrate analogues or transition-state analogues.

D Grobelny, U B Goli, R E Galardy
PMCID: PMC1152831  PMID: 4084224

Abstract

A series of phosphonic acid analogues of 2-benzylsuccinate were tested as inhibitors of carboxypeptidase A. The most potent of these, (2RS)-2-benzyl-3-phosphonopropionic acid, had a Ki of 0.22 +/- 0.05 microM, equipotent to (2RS)-2-benzylsuccinate and thus one of the most potent reversible inhibitors known for this enzyme. Lengthening by one methylene group to (2RS)-2-benzyl-4-phosphonobutyric acid increased the Ki to 370 +/- 60 microM. The monoethyl ester (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid was nearly as potent as (2RS)-2-benzyl-3-phosphonopropionic acid, with a Ki of 0.72 +/- 0.3 microM. The sulphur analogue of the monoethyl ester, 2-ambo-P-ambo-2-benzyl-3-(O-ethylthiophosphono)propionic acid, had a Ki of 2.1 +/- 0.6 microM, nearly as active as (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid. These phosphonic acids and esters could be considered to be multisubstrate inhibitors of carboxypeptidase A by virtue of their structural analogy with 2-benzylsuccinate. Alternatively, the tetrahedral hybridization at the phosphorus atom suggests that they could be mimicking a tetrahedral transition state for the enzyme-catalysed hydrolysis of substrate.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANDURSKI R. S., AXELROD B. The chromatographic identification of some biologically important phosphate esters. J Biol Chem. 1951 Nov;193(1):405–410. [PubMed] [Google Scholar]
  2. Bartlett P. A., Marlowe C. K. Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry. 1983 Sep 27;22(20):4618–4624. doi: 10.1021/bi00289a002. [DOI] [PubMed] [Google Scholar]
  3. Bolognesi M. C., Matthews B. W. Binding of the biproduct analog L-benzylsuccinic acid to thermolysin determined by X-ray crystallography. J Biol Chem. 1979 Feb 10;254(3):634–639. [PubMed] [Google Scholar]
  4. Byers L. D., Wolfenden R. Binding of the by-product analog benzylsuccinic acid by carboxypeptidase A. Biochemistry. 1973 May 22;12(11):2070–2078. doi: 10.1021/bi00735a008. [DOI] [PubMed] [Google Scholar]
  5. Galardy R. E., Grobelny D. Inhibition of collagenase from Clostridium histolyticum by phosphoric and phosphonic amides. Biochemistry. 1983 Sep 13;22(19):4556–4561. doi: 10.1021/bi00288a032. [DOI] [PubMed] [Google Scholar]
  6. Galardy R. E. Inhibition of angiotensin converting enzyme by phosphoramidates and polyphosphates. Biochemistry. 1982 Nov 9;21(23):5777–5781. doi: 10.1021/bi00266a008. [DOI] [PubMed] [Google Scholar]
  7. Galardy R. E., Kortylewicz Z. P. Inhibition of carboxypeptidase A by aldehyde and ketone substrate analogues. Biochemistry. 1984 Apr 24;23(9):2083–2087. doi: 10.1021/bi00304a032. [DOI] [PubMed] [Google Scholar]
  8. Galardy R. E., Kortylewicz Z. P. Inhibitors of angiotensin-converting enzyme containing a tetrahedral arsenic atom. Biochem J. 1985 Mar 1;226(2):447–454. doi: 10.1042/bj2260447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holmquist B., Vallee B. L. Metal-coordinating substrate analogs as inhibitors of metalloenzymes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6216–6220. doi: 10.1073/pnas.76.12.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kam C. M., Nishino N., Powers J. C. Inhibition of thermolysin and carboxypeptidase A by phosphoramidates. Biochemistry. 1979 Jul 10;18(14):3032–3038. doi: 10.1021/bi00581a019. [DOI] [PubMed] [Google Scholar]
  11. Monzingo A. F., Matthews B. W. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. Biochemistry. 1982 Jul 6;21(14):3390–3394. doi: 10.1021/bi00257a022. [DOI] [PubMed] [Google Scholar]
  12. Nishino N., Powers J. C. Design of potent reversible inhibitors for thermolysin. Peptides containing zinc coordinating ligands and their use in affinity chromatography. Biochemistry. 1979 Oct 2;18(20):4340–4347. doi: 10.1021/bi00587a012. [DOI] [PubMed] [Google Scholar]
  13. Ondetti M. A., Condon M. E., Reid J., Sabo E. F., Cheung H. S., Cushman D. W. Design of potent and specific inhibitors of carboxypeptidases A and B. Biochemistry. 1979 Apr 17;18(8):1427–1430. doi: 10.1021/bi00575a006. [DOI] [PubMed] [Google Scholar]
  14. Poncz L., Gerken T. A., Dearborn D. G., Grobelny D., Galardy R. E. Inhibition of the elastase of Pseudomonas aeruginosa by N alpha-phosphoryl dipeptides and kinetics of spontaneous hydrolysis of the inhibitors. Biochemistry. 1984 Jun 5;23(12):2766–2772. doi: 10.1021/bi00307a036. [DOI] [PubMed] [Google Scholar]
  15. Quiocho F. A., Lipscomb W. N. Carboxypeptidase A: a protein and an enzyme. Adv Protein Chem. 1971;25:1–78. doi: 10.1016/s0065-3233(08)60278-8. [DOI] [PubMed] [Google Scholar]
  16. Schechter I., Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968 Sep 6;32(5):898–902. doi: 10.1016/0006-291x(68)90326-4. [DOI] [PubMed] [Google Scholar]
  17. Suh J., Kaiser E. T. pH dependence of the nitrotyrosine-248 and arsanilazotyrosine-248 carboxypeptidase A catalyzed hydrolysis of O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate. J Am Chem Soc. 1976 Mar 31;98(7):1940–1947. doi: 10.1021/ja00423a048. [DOI] [PubMed] [Google Scholar]
  18. Weaver L. H., Kester W. R., Matthews B. W. A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol. 1977 Jul;114(1):119–132. doi: 10.1016/0022-2836(77)90286-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES