Abstract
Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known.
We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. A change of cell morphology from the usual polygonal to the appearence of fusiform or process-bearing cells was caused by the BCAA. Cell death was also observed when astrocytes were incubated in the presence of BCAA for longer periods.
Val-treated astrocytes presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects.
Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.
Keywords: cytoskeleton, actin, branched-chain amino acids, lysophosphatidic acid, creatine, maple syrup urine disease
References
- Aschner, M. (2000). Neuron-astrocyte interactions: Implications for cellular energetics and antioxidant levels. Neurotoxicology21:1101–1107. [PubMed] [Google Scholar]
- Appel, S. H. (1966). Inhibition of brain protein synthesis: an approach to a biochemical basis of neurological dysfunction in the amino-acidurias. Trans. N. Y. Acad. Sci. 29:63–70. [DOI] [PubMed] [Google Scholar]
- Araujo, P., Wassermann, G. F., Tallini, K., Furlanetto, V., Vargas, C. R., Wannmacher, C. M., and Wajner, M. (2001). Reduction of large neutral amino acid level in plasma and brain of hyperleucinemic rats. Neurochem. Int. 38:529–537. [DOI] [PubMed] [Google Scholar]
- Barile, M. F., Hopps, H. E., and Grabowski, M. (1978). Incidence and sources of mycoplasma contamination: a brief review. In McGarrity, G. J., Murphy, D. G., and Nichols, W. W. (eds.), Mycoplasma Infection of Cell Cultures, Plenum Press, New York, pp. 35–46. [Google Scholar]
- Bignami, A., and Dahl, D. (1976). The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFAP) in mammalian and submammalian vertebrates. Neuropathol. Appl. Neurobiol. 2:99–111. [Google Scholar]
- Chuang, D. T., and Shih, V. E. (2001). Maple syrup urine disease (branched-chain ketoaciduria). In Scriver, C. R., Beaudet, A. L., Sly, W. L., and Valle. D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, pp. 1971–2005. [Google Scholar]
- Cimarosti, H., Rodnight, R., Tavares, A., Paiva, R., Valentim, L., Rocha E., and Salbego, C. (2001). An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci. Lett. 315:33–36. [DOI] [PubMed] [Google Scholar]
- Cotrina, M. L., Lin J. H., and Nedergaard, M. (1998). Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J. Neurosci. 18:8794–8804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danbolt, N. C. (2001). Glutamate uptake. Progr. Neurobiol. 65:1–105. [DOI] [PubMed] [Google Scholar]
- Danner, D. J., and Elsas, J. L. (1989). Disorders of branched chain amino acid and keto acid metabolism. In Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds). The Metabolic Basis of Inherited Disease. Mc Graw Hill, New York, pp. 671–692. [Google Scholar]
- Dent, E. W., and Gestler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron40:209–227. [DOI] [PubMed] [Google Scholar]
- Duan, S., Anderson, C. M., Stein B. A., and Swanson, R. A. (1999). Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J. Neurosci. 19:10193–10200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Efron, M. L. (1965). Aminoaciduria. N. Engl. J. Med. 272:1058–1067. [DOI] [PubMed] [Google Scholar]
- Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature420:629–635. [DOI] [PubMed] [Google Scholar]
- Fukushima, N., Kimura, Y., and Chun, J. (1998). A single receptor encoded by vzg-l/IpAl/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A. 95:6151–6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funchal, C., de Lima Pelaez, P., Oliveira Loureiro, S., Vivian, L., Dall Bello Pessutto, F., Almeida, L. M. V., Wofchuk, S. T., Wajner, M., and Pessoa-Pureur, R. (2002). α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Dev. Brain Res. 139:267–276. [DOI] [PubMed] [Google Scholar]
- Funchal, C., Gottfried, C., Almeida, L. M. V., Wajner, M., and Pessoa-Pureur, R. (2004). Evidence that the branched chain α-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia48:230–240. [DOI] [PubMed] [Google Scholar]
- George, E. B., Schneider, B. F., Lasek R. J., and Katz, M. J. (1988). Axonal shortening and the mechanisms of axonal motility. Cell Mot. Cytoskel. 9:48–59. [DOI] [PubMed] [Google Scholar]
- Gottfried, C., Valentim, L., Salbego, C., Karl, J., Wofchuk, S. T., and Rodnight, R. (1999). Regulation of protein phosphorylation in astrocyte cultures by external calcium ions: Specific effects on the phosphorylation of GFAP, vimentin and heat shock protein 27 (HSP 27). Brain Res. 833:142–149. [DOI] [PubMed] [Google Scholar]
- Guasch, R. M., Tomas, M., Miñambres, R., Valles, S., Renau-Piqueras, J., and Guerri, C. (2003). Rho A and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol. J. Neurosci. Res. 72:487–502. [DOI] [PubMed] [Google Scholar]
- Halestrap, A., Brand M. D., and Denton, R. M. (1974). Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochem. Biophys. Acta. 367:102–108. [DOI] [PubMed] [Google Scholar]
- Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science279:509–514. [DOI] [PubMed] [Google Scholar]
- Helfand, B. T., Chang, L., and Goldman, R. D. (2004). Intermediate filaments are dynamic and motile elements of cellular architecture. J. Cell Sci. 117:133–141. [DOI] [PubMed] [Google Scholar]
- Howell, R. K., and Lee, M. (1963). Influence of alpha-ketoacids on the respiration of brain in vitro. Proc. Soc. Exp. Biol. Med. 113:660–663. [DOI] [PubMed] [Google Scholar]
- Jouvet, P., Rustin, P., Taylor, D. L., Pocock, J. M., Felderhoff-Mueser, U., Mazarakis, N. D., Sarrat, C., Joashi, U., Kozma, M., Greewood, K., Edwards A. D., and Mehmet, H. (2000). Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Mol. Biol. Cell11:1919–1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kindy, M. S., Bhat, A. N., and Bhat, N. R. (1992). Transient ischemia stimulate glial fibrillary acidic protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Mol. Brain Res. 13:199–206. [DOI] [PubMed] [Google Scholar]
- Lamigeon, C., Bellier, J. P., Sacchettoni, S., Rujano, M., and Jacquemont, B. (2001). Enhanced neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase-expression astrocytes. J. Neurochem. 77:598–606. [DOI] [PubMed] [Google Scholar]
- Land, J. M., Mowbray, J., and Clark, J. B. (1976). Control of pyruvate and β-hydroxy-butyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J. Neurochem. 26:823–830. [DOI] [PubMed] [Google Scholar]
- Lascola, C. D., Nelson, D. J., and Kraig, R. P. (1998). Cytoskeletal actin gates a Cl− channel in neocortical astrocytes. J. Neurosci. 18:1679–1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo, L. (2002). Actin cytoskeleton regulation in neuronal morpho genesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18:601–635. [DOI] [PubMed] [Google Scholar]
- Mackay, D. J. G., and Hall, A. (1998). Rho GTPases. J. Biol. Chem. 273:20685–20688. [DOI] [PubMed] [Google Scholar]
- Manning, T. J., Rosenfeld, S. S., and Sontheimer, H. (1998). Lysophosphatidic acid stimulates actomyosin contraction in astrocytes. J. Neurosci. Res. 53:343–352. [DOI] [PubMed] [Google Scholar]
- Nedergaard, M., Ranson, B., and Goldman, S. A. (2003). New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. [DOI] [PubMed] [Google Scholar]
- Nobes, C. D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81:53–62. [DOI] [PubMed] [Google Scholar]
- Nyhan, W. L. (1984). Abnormalities in Amino Acid Metabolism in Clinical Medicine, Appleton-Century-Crofts, Norwalk. [Google Scholar]
- Pilla, C., Cardozo, R. F., Dutra-Filho, C. S., Wyse, A. T., Wajner, M., and Wannmacher, C. M. (2003). Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem. Res. 28:675–679. [DOI] [PubMed] [Google Scholar]
- Pringle, A., Benhan, C., Sim, L., Kennedy, J., Iannoti, F., and Sundstrom, L. (1996). Selective N-type calcium channel antagonist omega-conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal slices cultures. Stroke27:2124–2130. [DOI] [PubMed] [Google Scholar]
- Ridley, A. J., and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell70:389–399. [DOI] [PubMed] [Google Scholar]
- Ridley, A. J., and Hall, A. (1994). Signal transduction pathways regulating Rho-mediated stress fiber formation: Requirement for tyrosine kinase. EMBO J. 13:2600–2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenblatt, J., Raff, M. C., and Cramer, L. P. (2001). An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11:1847–1857. [DOI] [PubMed] [Google Scholar]
- Schmidt, A., and Hall, M. N. (1998). Signaling to the actin cytoskeleton. Annu. Ver. Cell Dev. Biol. 14:305–338. [DOI] [PubMed] [Google Scholar]
- Sener, R. N. (2002). Diffusion magnetic resonance imaging in intermediate form of maple syrup urine disease. J. Neuroimaging12:368–370. [DOI] [PubMed] [Google Scholar]
- Sergeeva, M. M., Ubl, J. J., and Reiser, G. (2000). Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradykinin-induced (Ca2+)I oscillations by reducing the coupling efficiency between Ca2+ release, capacitative Ca2+ entry, and sore refilling, Neuroscience97:765–769. [DOI] [PubMed] [Google Scholar]
- Sgaravati, A. M., Rosa, R. B., Schuck, P. F. Ribeiro, C. A. J., Wannmacher, C. M. D., Wyse, A. T. S., Dutra-Filho, C. S, and Wajner, M. (2003). Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochim. Biophys. Acta. 1639:232–238. [DOI] [PubMed] [Google Scholar]
- Snyderman, E., Norton, P. M., and Roitman, B. (1964). Maple syrup urine disease, with particular reference to dietotherapy. Pediatrics34:454–472. [PubMed] [Google Scholar]
- Steinert, P. M., and Roop, D. R. (1988). Molecular and cellular biology of intermediate filaments. Annu. Ver. Biochem. 57:593–625. [DOI] [PubMed] [Google Scholar]
- Suidan, H. S., Nobes, C. D., Hall, A., and Monard, D. (1997). Astrocyte spreading in response to thrombin and lysophosphatidic acid is dependent on the Rho GTPase. Glia21:244–252. [DOI] [PubMed] [Google Scholar]
- Taketomi, T., Kunishita, T., Hara, A., and Mizushima, S. (1983). Abnormal protein and lipidic composition of the cerebral myelin of a patient with maple syrup urine disease. Jpn. J. Exp. Med. 53:109–116. [PubMed] [Google Scholar]
- Tashian, R. (1961). Inhibition of brain glutamic acid descarboxylase by phenylalanine, leucine and valine derivates: A suggestion concerning the neurological defect in phenylketonuria and branched-chain keto aciduria. Metabolism10:393–400. [PubMed] [Google Scholar]
- Treacy, E., Clow, C. L., Reade, T. R., Chitayat, D., Mamer, O. A., and Scriver, C. R. (1992). Maple syrup urine disease: Interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J. Inherit. Metab. Dis. 15:121–135. [DOI] [PubMed] [Google Scholar]
- Tribble, D., and Shapira, R. (1983). Myelin proteins: Degradation in rat brain initiated by metabolites causative of maple syrup urine disease. Biochem. Biophys. Res. Commun. 114:440–446. [DOI] [PubMed] [Google Scholar]
- Uziel, G., Savoiardo, M., and Nardocci. N. (1988). CT and MRI in maple syrup urine disease. Neurology38:486–488. [DOI] [PubMed] [Google Scholar]
- Vijayan, V. K., Goddes, J. W., Anderson, K. J., Chang-Chui, H., Ellis, W. G., and Cotman, C.W. (1991). Astrocytic hypertrophy in the Alzheimer’s disease hippocampal formation. Exp. Neurol. 112:72–79. [DOI] [PubMed] [Google Scholar]
- Wajner, M., and Vargas, C. R. (1999). Reduction of plasma concentrations of large neutral amino acids in patients with maple urine disease during crises. Arch. Dis. Child80:579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wajner, M., Coelho, D. M., Barschak, A. G., Araújo, P. R., Pires, R. F., Lulhier, F. L. G., and Vargas, C. R. (2000). Reduction of large neutral amino acid concentration in plasma and CSF of patients with maple syrup urine disease during crises. J. Inher. Met. Dis. 23:505–512. [DOI] [PubMed] [Google Scholar]
- Yudkoff, M. (1997). Brain metabolism of branched-chain amino acids. Glia21:92–98. [DOI] [PubMed] [Google Scholar]
- Zigmond, S. H. (1996). Signal transduction and actin filament organization. Curr. Opin. Cell Biol. 8:66–73. [DOI] [PubMed] [Google Scholar]