Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Apr;25(2):441–450. doi: 10.1007/s10571-005-3152-x

Repair and Regeneration of Functional Synaptic Connections: Cellular and Molecular Interactions in the Leech

Yuanli Duan 1, Joseph Panoff 1, Brian D Burrell 2, Christie L Sahley 3, Kenneth J Muller 1,4,5,
PMCID: PMC11529635  PMID: 16047551

Abstract

A major problem for neuroscience has been to find a means to achieve reliable regeneration of synaptic connections following injury to the adult CNS. This problem has been solved by the leech, where identified neurons reconnect precisely with their usual targets following axotomy, re-establishing in the adult the connections formed during embryonic development.

It cannot be assumed that once axons regenerate specific synapses, function will be restored. Recent work on the leech has shown following regeneration of the synapse between S-interneurons, which are required for sensitization of reflexive shortening, a form of non-associative learning, the capacity for sensitization is delayed.

The steps in repair of synaptic connections in the leech are reviewed, with the aim of understanding general mechanisms that promote successful repair. New results are presented regarding the signals that regulate microglial migration to lesions, a first step in the repair process. In particular, microglia up to 900 μm from the lesion respond within minutes by moving rapidly toward the injury, controlled in part by nitric oxide (NO), which is generated immediately at the lesion and acts via a soluble guanylate cyclase (sGC). The cGMP produced remains elevated for hours after injury. The relationship of microglial migration to axon outgrowth is discussed.

Keywords: nerve regeneration, microglia, nitric oxide, cell migration, time-lapse video, neuronal plasticity, non-associative learning, sensitization

References

  1. Arechiga, H. (1993). Circadian rhythms. Curr. Opin. Neurobiol.3:1005–1010. [DOI] [PubMed] [Google Scholar]
  2. Arechiga, H., and Rodriguez-Sosa, L. (1998). Circadian clock function in isolated eyestalk tissue of crayfish. Proc. Roy. Soc. Lond. B Biol. Sci.265:1819–1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baccus, S. A., Burrell, B. D., Sahley, C. L., and Muller, K. J. (2000). Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in an interneuron essential for learning. J. Neurophysiol.83:1693–1700. [DOI] [PubMed] [Google Scholar]
  4. Baccus, S. A., Sahley, C. L., and Muller, K. J. (2001). Multiple sites of action potential initiation increase neuronal firing rate. J. Neurophysiol.86:1226–1236. [DOI] [PubMed] [Google Scholar]
  5. Boulis, N. M., and Sahley, C. L. (1988). A behavioral analysis of habituation and sensitization of shortening in the semi-intact leech. J. Neurosci.8:4621–4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burrell, B. D., Sahley, C. L., and Muller, K. J. (2001). Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech. J. Neurosci.21:1401–1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burrell, B. D., Sahley, C. L., and Muller, K. J. (2002). Differential effects of serotonin enhance activity of an electrically coupled neural network. J. Neurophysiol.87:2889–2895. [DOI] [PubMed] [Google Scholar]
  8. Burrell, B. D., Sahley, C. L., and Muller, K. J. (2003). Progressive recovery of learning during regeneration of a single synapse in the medicinal leech. J. Comp. Neurol.457:67–74. [DOI] [PubMed] [Google Scholar]
  9. Camhi, J. M. (1993). Neural mechanisms of behavior. Curr. Opin. Neurobiol.3:1011–1019. [DOI] [PubMed] [Google Scholar]
  10. Carew, T. J., and Sahley, C. L. (1986). Learning in invertebrates: From behavior to molecules. Ann. Rev. Neurosci.9:435–487. [DOI] [PubMed] [Google Scholar]
  11. Chen, A., Kumar, S. M., Sahley, C. L., and Muller, K. J. (2000). Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS. J. Neurosci.20:1036–1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duan, Y., Haugabook, S. J., Sahley, C. L., and Muller, K. J. (2003). Methylene blue blocks cGMP production and disrupts directed migration of microglia to nerve lesions in the leech CNS. J. Neurobiol. [DOI] [PubMed]
  13. Ehrlich, J. S., Boulis, N. M., Karrer, T., and Sahley, C. L. (1992). Differential effects of serotonin depletion on sensitization and dishabituation in the leech, Hirudo medicinalis. J. Neurobiol.23:270–279. [DOI] [PubMed] [Google Scholar]
  14. Fernandez-de-Miguel, F., and Drapeau, P. (1995). Synapse formation and function: Insights from identified leech neurons in culture. J. Neurobiol.27:367–379. [DOI] [PubMed] [Google Scholar]
  15. Fernandez-de-Miguel, F., and Vargas, J. (1997). Different determinants on growth and synapse formation in cultured neurons. NeuroReport8:761–765. [DOI] [PubMed] [Google Scholar]
  16. Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci.4:703–713. [DOI] [PubMed] [Google Scholar]
  17. Gu, X., Macagno, E. R., and Muller, K. J. (1989). Laser microbeam axotomy and conduction block show that electrical transmission at a central synapse is distributed at multiple contacts. J. Neurobiol.20:422–434. [DOI] [PubMed] [Google Scholar]
  18. Kimmel, A. R., and Parent, C. A. (2003). The signal to move: D. discoideum go orienteering. Science300:1525–1527. [DOI] [PubMed] [Google Scholar]
  19. Koeberle, P. D., and Bähr, M. (2004). Growth and guidance cues for regenerating axons: Where have they gone? J. Neurobiol.59:162–180. [DOI] [PubMed] [Google Scholar]
  20. Kristan, W. B., Jr., Lockery, S. R., and Lewis, J. E. (1995). Using reflexive behaviors of the medicinal leech to study information processing. J. Neurobiol.27:380–389. [DOI] [PubMed] [Google Scholar]
  21. Kumar, S. M., Porterfield, D. M., Muller, K. J., Smith, P. J., and Sahley, C. L. (2001). Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J. Neurosci.21:215–220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuno, M., and Llinás, R. (1970). Alterations of synaptic action on chromatolysed motoneurones of the cat. J. Physiol. (Lond.)210:823–828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis, J. E., and Kristan, W. B., Jr. (1998). A neuronal network for computing population vectors in the leech. Nature391:76–79. [DOI] [PubMed] [Google Scholar]
  24. Luebke, A. E., Dickerson, I. M., and Muller, K. J. (1995). In situ hybridization reveals transient laminin B-chain expression by individual glial and muscle cells in embryonic leech CNS. J. Neurobiol.27:1–14. [DOI] [PubMed] [Google Scholar]
  25. Mar, A., and Drapeau, P. (1996). Modulation of conduction block in leech mechanosensory neurons. J. Neurosci.16:4335–4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mason, A., and Muller, K. J. (1996). Accurate synapse regeneration despite ablation of the distal axon segment. Eur. J. Neurosci.8:11–20. [DOI] [PubMed] [Google Scholar]
  27. Masuda-Nakagawa, L. M., Muller, K. J., and Nicholls, J. G. (1990). Accumulation of laminin and microglial cells at sites of injury and regeneration in the central nervous system of the leech. Proc. Roy. Soc. Lond. B241:201–206. [DOI] [PubMed] [Google Scholar]
  28. Masuda-Nakagawa, L. M., Muller, K. J., and Nicholls, J. G. (1993). Axonal sprouting and laminin appearance after destruction of glial sheaths. Proc. Natl. Acad. Sci. USA90:4966–4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McGlade-McCulloh, E., Morrissey, A. M., Norona, F., and Muller, K. J. (1989). Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system. Proc. Natl. Acad. Sci. USA86:1093–1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McMahan, U. J., Edgington, D. R., and Kuffler, D. P. (1980). Factors that influence regeneration of the neuromuscular junction. J. Exp. Biol.89:31–42. [DOI] [PubMed] [Google Scholar]
  31. Modney, B. K., Sahley, C. L., and Muller, K. J. (1997). Regeneration of a central synapse restores non-associative learning. J. Neurosci.17:6478–6482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morgese, V. J., Elliott, E. J., and Muller, K. J. (1983). Microglial movement to sites of nerve lesion in the leech CNS. Brain Res.272:166–170. [DOI] [PubMed] [Google Scholar]
  33. Muller, K. J., and Carbonetto, S. (1979). The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech. J. Comp. Neurol.185:485–516. [DOI] [PubMed] [Google Scholar]
  34. Nakajima, K., and Kohsaka, S. (2004). Microglia: Neuroprotective and neurotrophic cells in the central nervous system. Curr. Drug Targets Cardiovasc. Haematol. Disord.4:65–84. [DOI] [PubMed] [Google Scholar]
  35. Nicholls, J. G. (1987). The Search for Connections: Study of Regeneration in the Nervous System of the Leech. Magnes Lecture Series: Vol. II, Sinauer Associates Inc., Sunderland, Massachusetts, 84 pp.
  36. Nicholls, J. G., Martin, A. R., Wallace, B. G., and Fuchs, P. A. (2001). From Neuron to Brain, Sinauer Associates, Sunderland, MA, 580 pp. [Google Scholar]
  37. Perry, V. H., and Gordon, S. (1997). Microglia and macrophages. In Keane, R. W., and Hickey, W. F. (eds.), Immunology of the Nervous System, Oxford University Press, New York, pp. 155–172. [Google Scholar]
  38. Rotshenker, S. (2003). Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J. Mol. Neurosci.21:65–72. [DOI] [PubMed] [Google Scholar]
  39. Sahley, C. L., Modney, B. K., Boulis, N. M., and Muller, K. J. (1994). The S cell: An interneuron essential for sensitization and full dishabituation of leech shortening. J. Neurosci.14:6715–6721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sahley, C. L., and Ready, D. F. (1988). Associative learning modifies two behaviors in the leech, Hirudo medicinalis. J. Neurosci.8:4612–4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanes, D. H., Reh, T. A., and Harris, W. A. (2000). Development of the Nervous System, Academic Press, San Diego, 500 pp. [Google Scholar]
  42. Scott, S. A., and Muller, K. J. (1980). Synapse regeneration and signals for directed axonal growth in the C.N.S. of the leech. Dev. Biol.80:345–363. [DOI] [PubMed] [Google Scholar]
  43. Shafer, O. T., Chen, A., Kumar, S. M., Muller, K. J., and Sahley, C. L. (1998). Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury. Proc. Roy. Soc. Lond. B265:2171–2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shaw, B. K., and Kristan, W. B., Jr. (1995). The whole-body shortening reflex of the medicinal leech: Motor pattern, sensory basis, and interneuronal pathways. J. Comp. Physiol. (A)177:667–681. [DOI] [PubMed] [Google Scholar]
  45. Shaw, B. K., and Kristan, W. B., Jr. (1999). Relative roles of the S cell network and parallel interneuronal pathways in the whole-body shortening reflex of the medicinal leech. J. Neurophysiol.82:1114–1123. [DOI] [PubMed] [Google Scholar]
  46. Smith, P. J. S., Howes, E. A., and Treherne, J. E. (1987). Mechanisms of glial regeneration in an insect central nervous system. J. Exp. Biol.132:59–78. [DOI] [PubMed] [Google Scholar]
  47. Varga, Z. M., Schwab, M. E., and Nicholls, J. G. (1995). Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture. Proc. Natl. Acad. Sci. USA92:10959–10963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. von Bernhardi, R., and Muller, K. J. (1995). Repair of the central nervous system: Lessons from lesions in leeches. J. Neurobiol.27:353–366. [DOI] [PubMed] [Google Scholar]
  49. Wu, J. Y., Cohen, L. B., and Falk, C. X. (1994). Neuronal activity during different behaviors in Aplysia: A distributed organization? Science263:820–823. [DOI] [PubMed] [Google Scholar]
  50. Zecevic, D., Wu, J.-Y., Cohen, L. B., London, J. A., Höpp, H.-P., and Falk, C. X. (1989). Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J. Neurosci.9:3681–3689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES